Hyman Hartman

Learn More
The evolutionary developments that led to the ability of photosynthetic organisms to oxidize water to molecular oxygen are discussed. Two major changes from a more primitive non-oxygen-evolving reaction center are required: a charge-accumulating system and a reaction center pigment with a greater oxidizing potential. Intermediate stages are proposed in(More)
An autotrophic origin of metabolism is described, which requires clays, transition state metals, disulfide and dithiols, U.V. and cyanide ion. A general scheme is proposed, involving the fixation of CO2 and N2, for the evolution of intermediary metabolism based on the evolution of a complex system from a simple one. The basic conclusion is that metabolism(More)
We have collected a set of 347 proteins that are found in eukaryotic cells but have no significant homology to proteins in Archaea and Bacteria. We call these proteins eukaryotic signature proteins (ESPs). The dominant hypothesis for the formation of the eukaryotic cell is that it is a fusion of an archaeon with a bacterium. If this hypothesis is accepted(More)
The origin and evolution of photosynthesis is considered to be the key to the origin of life. This eliminates the need for a soup as the synthesis of the bioorganics are to come from the fixation of carbon dioxide and nitrogen. No soup then no RNA world or Protein world. Cyanobacteria have been formed by the horizontal transfer of green sulfur bacterial(More)
The most primitive code is assumed to be a GC code: GG coding for glycine, CC coding for proline, GC coding for alanine, CG coding for “arginine.” The genetic code is assumed to have originated with the coupling of glycine to its anticodon CC mediated by a copper-montmorillonite. The polymerization of polyproline followed when it was coupled to its(More)
We propose a computational and theoretical framework for analyzing rapid coevolutionary dynamics of bacteriophage and bacteria in their ecological context. Bacteriophage enter host cells via membrane-bound surface receptors often responsible for nutrient uptake. As such, a selective pressure will exist for the bacteria to modify its receptor configuration(More)
The early atmosphere of the Earth is considered to have been reducing (H2 rich) or neutral (CO2-N2). The present atmosphere by contrast is highly oxidizing (20% O2). The source of this oxygen is generally agreed to have been oxygenic photosynthesis, whereby organisms use water as the electron donor in the production of organic matter, liberating oxygen into(More)
The photolysis of water vapor with carbon monoxide at 1849 Å yields alcohols, aldehydes and organic acids, with an overall quantum yield of 3.3×10−2. This rather high quantum yield could have led to a contribution of ∼1011 organic molecules cm−2 sec−1 to the pool of organic material on the primitive Earth. The reactions are initiated by the photolysis of(More)
An evolutionary scheme is postulated in which a primitive code, involving only guanine and cytosine, would code for glycine(GG.), alanine(GC), arginine(CG.) and proline(CC). There evolves from this primitive code families of related amino acids as the code expands. The evolution of the aminiacyl-tRNA synthetases are considered to be indicators for the(More)
The molecular evolution of cytochrome c from angiosperms is compared to that from vertebrates. On the basis of a cladistic analysis from 26 plant species, compared to that from 27 vertebrate species, we find that although the vertebrate sequences yield reasonably well-defined minimal trees that are congruent with the biological tree, the plant sequences(More)