Hyeona Mun

  • Citations Per Year
Learn More
The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi₂Te₃-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te₃. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be(More)
The self-propagating exothermic chemical reaction with transient thermovoltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of(More)
Structural defects often dominate the electronic- and thermal-transport properties of thermoelectric (TE) materials and are thus a central ingredient for improving their performance. However, understanding the relationship between TE performance and the disordered atomic defects that are generally inherent in nanostructured alloys remains a challenge.(More)
Thermoelectrics, which transports heat for refrigeration or converts heat into electricity directly, is a key technology for renewable energy harvesting and solid-state refrigeration. Despite its importance, the widespread use of thermoelectric devices is constrained because of the low efficiency of thermoelectric bulk alloys. However, boundary engineering(More)
  • 1