Hyeon Jun Jeong

  • Citations Per Year
Learn More
Carrier localization phenomena in indium-rich InGaN/GaN multiple quantum wells (MQWs) grown on sapphire and GaN substrates were investigated. Temperature-dependent photoluminescence (PL) spectroscopy, ultraviolet near-field scanning optical microscopy (NSOM), and confocal time-resolved PL (TRPL) spectroscopy were employed to verify the correlation between(More)
We investigate the mechanism of light extraction enhancement of a GaN-based light-emitting diode (LED) grown on patterned sapphire substrate (PSS), that has ZnO nanorod arrays (NRAs) fabricated on top of the device using the hydrothermal method. We found that the light output power of the LED with ZnO NRAs increases by approximately 30% compared to the(More)
We present a novel metal-insulator-semiconductor (MIS) diode consisting of graphene, hexagonal BN, and monolayer MoS2 for application in ultrathin nanoelectronics. The MIS heterojunction structure was fabricated by vertically stacking layered materials using a simple wet chemical transfer method. The stacking of each layer was confirmed by confocal scanning(More)
We propose a semiconductor-insulator-semiconductor (SIS) heterojunction diode consisting of monolayer (1-L) MoS2, hexagonal boron nitride (h-BN), and epitaxial p-GaN that can be applied to high-performance nanoscale optoelectronics. The layered materials of 1-L MoS2 and h-BN, grown by chemical vapor deposition, were vertically stacked by a wet-transfer(More)
GaN-based ultraviolet (UV) LEDs are widely used in numerous applications, including white light pump sources and high-density optical data storage. However, one notorious issue is low hole injection rate in p-type transport layer due to poorly activated holes and spontaneous polarization, giving rise to insufficient light emission efficiency. Therefore,(More)
We report on the effect of embedded silica nanospheres on improving the performance of InGaN/GaN light-emitting diodes (LEDs). The silica nanospehres were coated on the selectively etched GaN using a spin-coating method. With the embedded silica nanospheres structures, we achieved a smaller reverse leakage current due to the selective defect(More)
We demonstrate enhanced light emission in blue light-emitting diodes (LEDs) by multiple Mie scattering from embedded silica nanosphere stacking layers (SNSL). A honeycomb cone structure is introduced in the GaN epilayer to confine a maximum number of silica nanospheres (SNs). We found that the light is predominantly directed vertically by scattering and(More)
GaN-based light-emitting diode (LED) was fabricated on the sapphire substrate with monolithic convex microstructures (CMs) array. Using confocal scanning electroluminescence (EL), we have directly observed the strong outcoupling phenomenon of the light confined in a LED via the CMs array. This outcoupled light could be efficiently converged on the convex(More)
Optimal length of ZnO nanorods (NRs) on blue InGaN light-emitting diodes (LEDs) was investigated to improve the light-extraction efficiency (LEE) of the LED. X-ray diffraction, photoluminescence spectroscopy, and micro-Raman spectroscopy were employed to determine the structural and optical properties of the ZnO NRs with length of 300 nm and 5 μm grown by a(More)
We report on the efficiency enhancement in GaN-based light-emitting diodes (LEDs) using ZnO micro-walls grown by a hydrothermal method. The formation of ZnO micro-walls at the indium tin oxide (ITO) border on the LED structure is explained by the heterogeneous nucleation effect. The light output power of LEDs with ZnO micro-walls operated at 20 mA was found(More)