Learn More
Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T(1)(More)
Recent experiments suggest that T1 relaxation in the rotating frame (T1ρ) detects localized metabolic changes in the human visual cortex induced by a flashing checkerboard task. Possible sources of the T1ρ signal include pH, glucose, and glutamate concentrations as well as changes in cerebral blood volume. In this study we explored the relationship of the(More)
Functional T1ρ mapping has been proposed as a method to assess pH and metabolism dynamics in the brain with high spatial and temporal resolution. The purpose of this work is to describe and evaluate a variant of the spin-locked echo-planar imaging sequence for functional T1ρ mapping at 3T. The proposed sequence rapidly acquires a time series of T1ρ maps(More)
To demonstrate in a small case series for the first time the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) at ultrahigh field (7T). Two de novo (i.e., untreated) brain tumor patients underwent both BOLD resting-state fMRI (rsfMRI) on a 7T MRI(More)
Synopsis CEST imaging, such as amide proton transfer (APT) imaging, is a novel, clinically valuable molecular MRI technique that can give contrast due to a change in water signal caused by chemical exchange with saturated solute protons. However, its clinical translation is still limited by its relatively long scan time because a series of RF saturation(More)
BACKGROUND To compare different reference images selected for registration among chemical exchange saturation transfer (CEST) series. MATERIALS AND METHODS Five normal volunteers and eight brain tumor patients were studied on a 3 Tesla scanner. Image registration was performed by choosing each of the acquired CEST saturation or unsaturation dynamic images(More)
Recent experiments suggest that T1 relaxation in the rotating frame (T(1ρ)) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling.(More)
  • 1