Hyang-Tag Lim

Learn More
In the Aharonov-Albert-Vaidman (AAV) weak measurement, it is assumed that the measuring device or the pointer is in a quantum mechanical pure state. In reality, however, it is often not the case. In this paper, we generalize the AAV weak measurement scheme to include more generalized situations in which the measuring device is in a mixed state. We also(More)
Wheeler's delayed-choice experiment illustrates vividly that the observer plays a central role in quantum physics by demonstrating that complementarity or wave-particle duality can be enforced even after the photon has already entered the interferometer. The delayed-choice quantum eraser experiment further demonstrates that complementarity can be enforced(More)
Many paradoxes of quantum mechanics come from the fact that quantum systems can possess different features simultaneously, such as in wave-particle duality or quantum superposition. In recent delayed-choice experiments, a quantum system can be observed to manifest one feature such as the wave or particle nature, depending on the measurement setup, which is(More)
We report the first experimental realization of an approximate partial transpose for photonic two-qubit systems. The proposed scheme is based on the local operation on single copies of quantum states and classical communication, and therefore can be easily applied for other quantum information tasks within current technologies. Direct detection of(More)
Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another,(More)
When two entangled qubits, each owned by Alice and Bob, undergo separate decoherence, the amount of entanglement is reduced, and often, weak decoherence causes complete loss of entanglement, known as entanglement sudden death. Here we show that it is possible to apply quantum measurement reversal on a single-qubit to avoid entanglement sudden death, rather(More)
Quantum-mechanical wave-particle duality implies that probability distributions for granular detection events exhibit wave-like interference. On the single-particle level, this leads to self-interference--e.g., on transit across a double slit--for photons as well as for large, massive particles, provided that no which-way information is available to any(More)
Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic(More)
One of the most intriguing features of entanglement is that entangled quantum systems exhibit exchange symmetry; that is, local quantum operations on the subsystems may be interchanged without affecting the quantum state. In this work, we investigate whether the exchange symmetry is preserved for the weak (or partial collapse) measurement, a type of quantum(More)
An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization(More)