Hyam I. Levitsky

Learn More
To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant(More)
Many tumors express tumor-specific antigens capable of being presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules. Antigen presentation models predict that the tumor cell itself should present these antigens to T cells. However, when conditions for the priming of tumor-specific responses were examined in mice, no detectable(More)
Regulatory T cells (Tregs) limit autoimmunity but also attenuate the magnitude of antipathogen and antitumor immunity. Understanding the mechanism of Treg function and therapeutic manipulation of Tregs in vivo requires identification of Treg-selective receptors. A comparative analysis of gene expression arrays from antigen-specific CD4(+) T cells(More)
A poorly immunogenic murine colon cancer was used to investigate mechanisms of antitumor immunity. Injection of tumor cells engineered by gene transfection to secrete IL-2 stimulated an MHC class I-restricted cytolytic T lymphocyte (CTL) response against the parental tumor. The tumor cells secreting IL-2 produced an antitumor response in vivo, even in the(More)
The induction of optimal systemic antitumor immunity involves the priming of both CD4(+) and CD8(+) T cells specific for tumor-associated antigens. The role of CD4(+) T helper cells (Th) in this response has been largely attributed to providing regulatory signals required for the priming of major histocompatibility complex class I restricted CD8(+)(More)
Presentation of antigenic peptides by MHC class II molecules to CD4+ T cells is critical to the generation of antitumor immunity. In an attempt to enhance MHC class II antigen processing, we linked the sorting signals of the lysosome-associated membrane protein (LAMP-1) to the cytoplasmic/nuclear human papilloma virus (HPV-16) E7 antigen, creating a chimera(More)
The generation of antigen-specific antitumor immunity is the ultimate goal in cancer immunotherapy. When cells from a spontaneously arising murine renal cell tumor were engineered to secrete large doses of interleukin-4 (IL-4) locally, they were rejected in a predominantly T cell-independent manner. However, animals that rejected the IL-4-transfected tumors(More)
Locomoting polymorphonuclear leukocytes (PMNs) exhibit a morphological polarity. We demonstrate that they also exhibit a behavioral polarity in their responsiveness to chemotactic factor stimulation. This is demonstrated by (a) the pattern of their locomotion in a homogeneous concentration of chemotactic factors, (b) their responses to increases in the(More)
Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4(More)
Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced, irradiated tumor vaccines induce potent, T-cell-mediated antitumor immune responses in preclinical models. We report the initial results of a Phase I trial evaluating this strategy for safety and the induction of immune responses in patients with metastatic renal cell carcinoma(More)