Hwi Ju Kang

Learn More
In this work, the in vivo biodegradation of, biocompatibility of, and host response to various topographic scaffolds were investigated. Randomly oriented fibrous poly(L-lactide) (PLLA) nanofibers were fabricated using the electrospinning technique. A PLLA scaffold was obtained by salt leaching. Both the electrospun PLLA nanofibers and the salt-leaching PLLA(More)
ɛ-Caprolactone (CL) and 3-benzyloxymethyl-6-methyl-1,4-dioxane-2,5-dion (fLA), with a benzyloxymethyl group at the 3-position of the lactide, were randomly copolymerized. The methoxy polyethylene glycol (MPEG)-b-[poly(ɛ-caprolactone)-ran-poly(3-benzyloxymethyl lactide) (PCL-ran-PfLA)] diblock copolymers were designed such that the PfLA content (0-15 mol%)(More)
The bare metal stent (BMS) used in the blood vessel caused the restenosis after the operation due to formation and proliferation of neointimal. Recently, as a method to overcome the problems of BMS, drug eluting stent (DES) is developed and being applied to human body which has drug reducing restenosis applied on the metal surface. DES has the advantage of(More)
The ring-opening polymerization of epsilon-caprolactone (CL) was carried out with polypropylene glycol (PPG) as an initiator in the presence of the monomer activator HCl. Et2O to synthesize poly(epsilon-caprolactone)-poly(propyleneglycol)-poly(epsilon-caprolactone) (PCL-PPG-PCL) triblock copolymers with change of length PPG and PCL. The micelle formation of(More)
  • 1