Learn More
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the(More)
Mps1, a dual-specificity kinase, is required for the proper functioning of the spindle assembly checkpoint and for the maintenance of chromosomal stability. As Mps1 function has been implicated in numerous phases of the cell cycle, the development of a potent, selective small-molecule inhibitor of Mps1 should facilitate dissection of Mps1-related biology.(More)
Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of(More)
PURPOSE The EML4-ALK fusion gene has been detected in approximately 7% of Japanese non-small cell lung cancers (NSCLC). We determined the frequency of EML4-ALK in Caucasian NSCLC and in NSCLC cell lines. We also determined whether TAE684, a specific ALK kinase inhibitor, would inhibit the growth of EML4-ALK-containing cell lines in vitro and in vivo. (More)
We report the synthesis of a GDP analogue, SML-8-73-1, and a prodrug derivative, SML-10-70-1, which are selective, direct-acting covalent inhibitors of the K-Ras G12C mutant relative to wild-type Ras. Biochemical and biophysical measurements suggest that modification of K-Ras with SML-8-73-1 renders the protein in an inactive state. These first-in-class(More)
Leucine-rich repeat kinase 2 (LRRK2) is linked to Parkinson's disease and may represent an attractive therapeutic target. Here we report a 2,4-dianilino-5-chloro-pyrimidine, TAE684, a previously reported inhibitor of anaplastic lymphoma kinase (ALK), is also a potent inhibitor of LRRK2 kinase activity (IC(50) of 7.8nM against wild-type LRRK2, 6.1nM against(More)
PURPOSE Mutant selective irreversible pyrimidine-based EGFR kinase inhibitors, including WZ4002, CO-1686, and AZD9291, are effective in preclinical models and in lung cancer patients harboring the EGFR T790M gefitinib/erlotinib resistance mutation. However, little is known about how cancers develop acquired resistance to this class of EGFR inhibitors. We(More)
Many clinically validated kinases, such as BCR-ABL, c-Kit, PDGFR, and EGFR, become resistant to adenosine triphosphate-competitive inhibitors through mutation of the so-called gatekeeper amino acid from a threonine to a large hydrophobic amino acid, such as an isoleucine or methionine. We have developed a new class of adenosine triphosphate competitive(More)
Plasmacytoid dendritic cells (pDCs) are characterized by their ability to produce high levels of type 1 interferons in response to ligands that activate TLR7 and TLR9, but the signaling pathways required for IFN production are incompletely understood. Here we exploit the human pDC cell line Gen2.2 and improved pharmacological inhibitors of protein kinases(More)
Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for some forms of Parkinson's disease. Here we report the discovery and characterization of 2-arylmethyloxy-5-subtitutent-N-arylbenzamides with potent LRRK2 activities exemplified by GSK2578215A which exhibits biochemical IC(50)s of around 10 nM against both wild-type LRRK2 and the(More)