Hwan Chul Jeon

  • Citations Per Year
Learn More
Microencapsulation and controlled release have long been studied because of the high demand for practical delivery systems in the pharmaceutics and cosmetics fields. Multiphase emulsion drops have provided efficient templates for microcapsules, and various feasible methods have been developed for controlled release. However, the emulsion-based approach has(More)
Active tunable plasmonic cap arrays were fabricated on a flexible stretchable substrate using a combination of colloidal lithography, lift-up soft lithography, and subsequent electrostatic assembly of gold nanoparticles. The arrangement of the plasmonic caps could be tuned under external strain to deform the substrate in reversible. Real-time variation in(More)
Three-dimensional hierarchical architectures are fabricated using a simple, cost-effective, durable colloidal phase mask containing a colloidal monolayer embedded in a flexible polydimethylsiloxane (PDMS) membrane. These structures give rise to a photonic bandgap that can be tuned over a wide spectral range from the visible to the near-infrared regions.
Large-area, highly ordered, Ag-nanostructured arrays with various geometrical features were prepared for use as surface-enhanced Raman scattering (SERS)-active substrates by the self-assembly of inorganic particles on an SU-8 surface, followed by particle embedding and Ag vapor deposition. By adjusting the embedding time of the inorganic particles, the size(More)
Anisotropic nanostructures with precise orientations or sharp corners display unique properties that may be useful in a variety of applications; however, precise control over the anisotropy of geometric features, using a simple and reproducible large-area fabrication technique, remains a challenge. Here, we report the fabrication of highly uniform polymeric(More)
Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by(More)
  • 1