Learn More
In female mammals, most genes on one X chromosome are silenced as a result of X-chromosome inactivation. However, some genes escape X-inactivation and are expressed from both the active and inactive X chromosome. Such genes are potential contributors to sexually dimorphic traits, to phenotypic variability among females heterozygous for X-linked conditions,(More)
The XIST gene is implicated in X chromosome inactivation, yet the RNA contains no apparent open reading frame. An accumulation of XIST RNA is observed near its site of transcription, the inactive X chromosome (Xi). A series of molecular cytogenetic studies comparing properties of XIST RNA to other protein coding RNAs, support a critical distinction for XIST(More)
The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination(More)
We have combined long synthetic arrays of alpha satellite DNA with telomeric DNA and genomic DNA to generate artificial chromosomes in human HT1080 cells. The resulting linear microchromosomes contain exogenous alpha satellite DNA, are mitotically and cytogenetically stable in the absence of selection for up to six months in culture, bind centromere(More)
The definition of centromeres of human chromosomes requires a complete genomic understanding of these regions. Toward this end, we report integration of physical mapping, genetic, and functional approaches, together with sequencing of selected regions, to define the centromere of the human X chromosome and to explore the evolution of sequences responsible(More)
We report the identification and characterization of a family of repeated restriction fragments whose molecular organization is apparently specific to the human X chromosome. This fragment, identified as an ethidium bromide-staining 2.0 kilobase (kb) band in BamHI-digested DNA from a Chinese hamster-human somatic cell hybrid containing a human X chromosome,(More)
X-chromosome inactivation results in the cis-limited dosage compensation of genes on one of the pair of X chromosomes in mammalian females. Although most X-linked genes are believed to be subject to inactivation, several are known to be expressed from both active and inactive X chromosomes. Here we describe an X-linked gene with a novel expression(More)
X-chromosome inactivation is widely believed to be random in early female development and to result in a mosaic distribution of cells, approximately half with the paternally derived X chromosome inactive and half with the maternally derived X chromosome inactive. Significant departures from such a random pattern are hallmarks of a variety of clinical(More)
BACKGROUND Variable health literacy and genetic knowledge may pose significant challenges to engaging the general public in personal genomics, specifically with respect to promoting risk comprehension and healthy behaviors. METHODS We are conducting a multistage study of individual responses to genomic risk information for Type 2 diabetes mellitus. A(More)
X chromosome inactivation in mammalian females results in the cis-limited transcriptional inactivity of most of the genes on one X chromosome. The XIST gene is unique among X-linked genes in being expressed exclusively from the inactive X chromosome. Human XIST cDNAs containing at least eight exons and totaling 17 kb have been isolated and sequenced within(More)