Hunter E. Halverson

Learn More
How Purkinje cell (PC) activity may be altered by learning is central to theories of the cerebellum. Pavlovian eyelid conditioning, because of how directly it engages the cerebellum, has helped reveal many aspects of cerebellar learning and the underlying mechanisms. Theories of cerebellar learning assert that climbing fiber inputs control plasticity at(More)
Eyeblink conditioning, a type of associative motor learning, requires the cerebellum. The medial auditory thalamus is a necessary source of stimulus input to the cerebellum during auditory eyeblink conditioning. Nothing is currently known about interactions between the thalamus and cerebellum during associative learning. In the current study, neuronal(More)
The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases. Muscimol was(More)
The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate nucleus (LGN),(More)
The discovery of single-trial learning effects, where the presence or absence (or the number) of climbing fiber inputs produces measureable changes in Purkinje cell response and in behavior, represents a major breakthrough in cerebellar learning. Among other things, these observations provide strong links between climbing fiber-mediated plasticity and(More)
Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning. However, the(More)
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or muscimol(More)
The neural pathways that convey conditioned stimulus (CS) information to the cerebellum during eyeblink conditioning have not been fully delineated. It is well established that pontine mossy fiber inputs to the cerebellum convey CS-related stimulation for different sensory modalities (e.g., auditory, visual, tactile). Less is known about the sources of(More)
The analysis of well-defined behaviors that require the cerebellum has helped reveal many key mechanisms operating in the cerebellum to mediate learning and feed-forward prediction. These systems include eyelid conditioning, adaptation of the vestibuloocular reflex, smooth pursuit eye movements, and arm-reaching tasks. This review focuses specifically on(More)
Averaging artifacts inherent in group acquisition curves can mask behavioral phenomena that are potentially revealing in terms of underlying neural mechanisms. To address this, we implemented a behavioral analysis of 106 rabbits trained over 4 sessions using delay eyelid conditioning. Group results showed the typical monotonic increase in conditioned(More)