Learn More
In this paper, we apply some effective methods, including the gain-phase margin tester, describing function and parameter plane, to predict the limit cycles of dynamic fuzzy control systems with adjustable parameters. Both continuous-time and sampled-data fuzzy control systems are considered. In general, fuzzy control systems are nonlinear. By use of the(More)
—This paper is concentrated on a perturbed vehicle control system whose gain margin (GM) and phase margin (PM) are analyzed and for which a novel controller design method satisfying the given specifications on GM, PM, and sensitivity is developed. The approach is applied to the plants with uncertain parameters that vary in intervals. Based on the parameter(More)
This study analyzes the absolute stability in static fuzzy logic control systems with certain and uncertain parameters. For certain static fuzzy control systems, the absolute stability can be analyzed with Popov criterion. The uncertain parameters for absolute stability analysis include the reference input, actuator gain and interval linear plant. The(More)
This investigation applies the adaptive fuzzy-neural observer (AFNO) to synchronize a class of unknown chaotic systems via scalar transmitting signal only. The proposed method can be used in synchronization if nonlinear chaotic systems can be transformed into the canonical form of Lur'e system type by the differential geometric method. In proposed approach,(More)
The main purpose of this paper is to analyze the stability for a fuzzy vehicle steering control system. In general, fuzzy control system is a nonlinear control system. Therefore, the fuzzy controller may be linearized by the use of describing function first. After then, the traditional frequency domain method i.e. parameter plane, is then applied to(More)
  • 1