Learn More
The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new(More)
The possible role of astrocytes in the regulation of feeding has been overlooked. It is well-established that the endothelial cells constituting the blood-brain barrier transport leptin from blood to brain and that hypothalamic neurons respond to leptin to induce anorexic signaling. However, few studies have addressed the role of astrocytes in either leptin(More)
Nesfatin-1 is an 82 amino acid peptide that suppresses food intake after intracerebroventricular injection. Nesfatin-1 and its precursor NUCB2 were identified by subtraction cloning in cell lines of both neuronal and adipocytic origin. This provides a strong basis for studies to determine how peripherally derived nesfatin-1 permeates the blood-brain barrier(More)
We recently reported that mouse astrocytes express leptin receptors (ObR), and that obesity induces upregulation of astrocytic ObR. To provide further evidence of the importance of astrocytic ObR expression, we performed double-labeling fluorescent in situ hybridization (FISH) and immunohistochemistry in the rat hypothalamus. Laser confocal microscopic(More)
In this study we tested the hypothesis that receptor-mediated transport of urocortin across the blood-brain barrier (BBB) undergoes developmental changes. Urocortin is a peptide produced by both selective brain regions and peripheral organs, and it is involved in feeding, memory, mood, cardiovascular functions, and immune regulation. In BBB studies with(More)
Contrary to the reduction of depressive-like behavior observed in several strains of cytokine receptor knockout mice, mice lacking the specific receptor for interleukin (IL)-15 showed increased immobility in tail suspension and modified forced swimming tests. There was also a reduction in social interactions. The hippocampus of the IL15Rα knockout mice had(More)
Interleukin (IL)-15 and its receptors in cerebral microvascular endothelial cells play an important role in mediating neuroinflammatory signaling across the blood-brain barrier. Although alternative splice variants of IL15Ralpha (the specific receptor) are seen in immune cells, the presence and functions of splice variants have not been studied in the(More)
Interleukin-15 (IL-15) is a cytokine produced in the normal brain that acts on its specific receptor IL-15Ralpha and co-receptors IL-2Rbeta and IL-2Rgamma in neuronal cells. The functions of the cerebral IL-15 system, however, are not yet clear. To test the hypothesis that IL-15Ralpha regulates metabolic activity and body temperature, we quantified the(More)
FGF21 recently has been proposed as a missing link in the biology of fasting, raising the question of whether it directly reaches the brain. We used multiple time-regression analysis to quantify the influx rate of this polypeptide across the blood-brain barrier (BBB), size-exclusion chromatography to examine degradation, capillary depletion to differentiate(More)
Interleukin (IL)-15 is a ubiquitously expressed cytokine that in the basal state is mainly localized intracellularly, including the nucleus. Unexpectedly, tumor necrosis factor-α (TNF) time-dependently induced nuclear export of IL-15Rα and IL15. This process was inhibited by leptomycine B (LMB), a specific inhibitor of nuclear export receptor chromosomal(More)