Learn More
We report the development of a new multi-frequency electrical impedance tomography (EIT) system called the KHU Mark2. It is descended from the KHU Mark1 in terms of technical details such as digital waveform generation, Howland current source with multiple generalized impedance converters and digital phase-sensitive demodulators. New features include(More)
Electrical Impedance Tomography (EIT) is a safe medical imaging technology, requiring no ionizing or heating radiation, as opposed to most other imaging modalities. This has led to a clinical interest in its use for long-term monitoring, possibly at the bedside, for ventilation monitoring, bleeding detection, gastric emptying and epilepsy foci diagnosis.(More)
When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS). We found that their electrical impedance spectra depend not(More)
BACKGROUND Modern EIT systems require simultaneously operating multiple functions for flexibility, interoperability, and clinical applicability. To implement versatile functions, expandable design and implementation tools are needed. On the other hand, it is necessary to develop an ASIC-based EIT system to maximize its performance. Since the ASIC design is(More)
Electrode properties are key to the quality of measured biopotential signals. Ubiquitous health care systems require long-term monitoring of biopotential signals from normal volunteers and patients in home or hospital environments. In these settings it is appropriate to use dry textile electrode networks for monitoring purposes, rather than the gel or(More)
PURPOSE This study shows the potential of magnetic resonance electrical impedance tomography (MREIT) as a non-invasive RF ablation monitoring technique. MATERIALS AND METHODS We prepared bovine muscle tissue with a pair of needle electrodes for RF ablation, a temperature sensor, and two pairs of surface electrodes for conductivity image reconstructions.(More)
We describe a novel design of a microscopic electrical impedance tomography (micro-EIT) system for long-term noninvasive monitoring of cell or tissue cultures. The core of the micro-EIT system is a sample container including two pairs of current-injection electrodes and 360 voltage-sensing electrodes. In designing the container, we took advantage of a(More)
In this paper we exploit the high timing resolution offered by microprocessors to develop an amplitude measurement approach that is convenient for high channel count portable sinusoidal recording systems such as the bioimpedance measurements used in impedance imaging. This approach reduces the number of components required per channel, reducing cost, size(More)
BACKGROUND Malignant breast tumor tissue has a significantly different electrical impedance spectrum than surrounding normal tissues. This has led to the development of impedance imaging as a supplementary or alternative method to X-ray mammography for screening and assessment of breast cancers. However low spatial resolution and poor signal to noise ratio(More)
Electrical impedance imaging has a potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. Specially, tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. We applied the anomaly detection algorithm to the high(More)