Learn More
Structural and functional analyses were used to investigate the regulation of the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) by Ca2+. To define the structural determinants for Ca2+ binding, cDNAs encoding GST fusion proteins that covered the complete linear cytosolic sequence of the InsP3R-1 were expressed in bacteria. The fusion proteins were(More)
Elementary Ca(2+) signals, such as "Ca(2+) puffs", which arise from the activation of inositol 1,4,5-trisphosphate receptors, are building blocks for local and global Ca(2+) signalling. We characterized Ca(2+) puffs in six cell types that expressed differing ratios of the three inositol 1,4,5-trisphosphate receptor isoforms. The amplitudes, spatial spreads(More)
Calreticulin is a Ca2+-binding chaperone in the endoplasmic reticulum (ER), and calreticulin gene knockout is embryonic lethal. Here, we used calreticulin-deficient mouse embryonic fibroblasts to examine the function of calreticulin as a regulator of Ca2+ homeostasis. In cells without calreticulin, the ER has a lower capacity for Ca2+ storage, although the(More)
The Ca2+ content of the intracellular Ca2+ stores controls the inositol 1,4,5-trisphosphate receptor (InsP3R) in the clonal cell line A7r5. This regulation was characterized with respect to the understanding of the "quantal" release phenomenon. Independent of the loading protocol used, increasing the Ca2+ content of the stores increased the sensitivity of(More)
The pannexin (Panx) family of proteins, which is co-expressed with connexins (Cxs) in vertebrates, was found to be a new GJ-forming protein family related to invertebrate innexins. During the past ten years, different studies showed that Panxs mainly form hemichannels in the plasma membrane and mediate paracrine signalling by providing a flux pathway for(More)
In almost all cells, cytosolic Ca(2+) is a crucial intracellular messenger, regulating many cellular processes. In non-excitable as well as in some excitable cells, Ca(2+) release from the intracellular stores into the cytoplasm is primarily initiated by the second messenger inositol 1,4,5-trisphosphate (IP(3)), which interacts with the IP(3) receptor(More)
Disrupting inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)/B-cell lymphoma 2 (Bcl-2) complexes using a cell-permeable peptide (stabilized TAT-fused IP3R-derived peptide (TAT-IDP(S))) that selectively targets the BH4 domain of Bcl-2 but not that of B-cell lymphoma 2-extra large (Bcl-Xl) potentiated pro-apoptotic Ca(2+) signaling in chronic lymphocytic(More)
Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular(More)
Even a prolonged application of a submaximal dose of Ins(1,4,5)P3 is unable to release the same amount of Ca2+ from the Ins(1,4,5)P3-sensitive store as a higher dose of Ins(1,4,5)P3. Low doses of Ins(1,4,5)P3 therefore only induce a partial release of the stored Ca2+. In this review, we will focus on the mechanisms that may contribute to this behaviour.(More)
Inositol 1,4,5-trisphosphate receptors (InsP3R) play a key role in intracellular calcium (Ca2+) signaling. Three mammalian InsP3R isoforms--InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals, but the functional differences between the three mammalian InsP3R isoforms are poorly understood. Here we compared(More)