Learn More
Linear Discriminant Analysis (LDA) is a popular data-analytic tool for studying the class relationship between data points. A major disadvantage of LDA is that it fails to discover the local geometrical structure of the data manifold. In this paper, we introduce a novel linear algorithm for discriminant analysis, called Locality Sensitive Discriminant(More)
Matrix factorization techniques have been frequently applied in information processing tasks. Among them, Non-negative Matrix Factorization (NMF) have received considerable attentions due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts-based in human brain. On the other hand, from geometric(More)
This paper presents a novel method for recovering consistent depth maps from a video sequence. We propose a bundle optimization framework to address the major difficulties in stereo reconstruction, such as dealing with image noise, occlusions, and outliers. Different from the typical multi-view stereo methods, our approach not only imposes the(More)
In this paper, we introduce a novel approach to mesh editing with the Poisson equation as the theoretical foundation. The most distinctive feature of this approach is that it modifies the original mesh geometry implicitly through gradient field manipulation. Our approach can produce desirable and pleasing results for both global and local editing(More)
In this paper, we present a method for constructing a 3D <i>cross-frame field</i>, a 3D extension of the 2D cross-frame field as applied to surfaces in applications such as quadrangulation and texture synthesis. In contrast to the surface cross-frame field (equivalent to a 4-Way Rotational-Symmetry vector field), symmetry for 3D cross-frame fields cannot be(More)
We present a novel technique for large deformations on 3D meshes using the volumetric graph Laplacian. We first construct a graph representing the volume inside the input mesh. The graph need not form a solid meshing of the input mesh's interior; its edges simply connect nearby points in the volume. This graph's Laplacian encodes volumetric details as the(More)
We present a real-time algorithm called <i>compensated ray marching</i> for rendering of smoke under dynamic low-frequency environment lighting. Our approach is based on a decomposition of the input smoke animation, represented as a sequence of volumetric density fields, into a set of radial basis functions (RBFs) and a sequence of residual fields. To(More)
We consider the problem of lossy image compression from machine learning perspective. Typical image compression algorithms first transform the image from its spatial domain representation to frequency domain representation using some transform technique, such as Discrete Cosine Transform and Discrete Wavelet Transform, and then code the transformed values.(More)