Learn More
Proton exchangemembrane fuel cells are promising candidates for a clean and efficient energy conversion in the future, the development of carbon based inexpensive non-precious metal ORR catalyst has becoming one of the most attractive topics in fuel cell field. Herein we report a Feand Ndoped carbon catalyst Fe-PANI/C-Mela with graphene structure and the(More)
The main challenges to the commercial viability of polymer electrolyte membrane fuel cells are (i) the high cost associated with using large amounts of Pt in fuel cell cathodes to compensate for the sluggish kinetics of the oxygen reduction reaction, (ii) catalyst degradation, and (iii) carbon-support corrosion. To address these obstacles, our group has(More)
The development of effective bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant for energy conversion systems, such as Li-air batteries, fuel cells, and water splitting technologies. Herein, a Chlorella-derived catalyst with a nestlike framework, composed of bamboolike nanotubes that encapsulate(More)
Core-shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core-shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse(More)
The lithium-air (Li-O2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed(More)
  • 1