Learn More
MADS-box genes encode a family of transcription factors, which control diverse developmental processes in flowering plants, with organs ranging from roots, flowers and fruits. In this study, six maize cDNAs encoding MADS-box proteins were isolated. BLASTX searches and phylogenetic analysis indicated that the six MADS-box genes belonging to the AGL2-like(More)
In this article, we consider the uniform circular arrays (UCAs) with the number of antenna elements insufficient to apply the traditional beamspace-based algorithms, which are labeled as sparse UCAs. For such UCAs, we propose a new hybrid approach for 2D direction-of-arrival (DOA) estimation in the presence of mutual coupling. Using the manifold(More)
NAC with a transmembrane (TM) motif1-like (NTL) transcription factors, containing three regions: the N-terminal NAC domain (ND), the middle regulation region (RR), and the C-terminal TM domain, belong to the tail-anchored proteins. Although these NTLs play numerous essential roles in plants, their subcellular distribution and the mechanism of translocation(More)
Utilization of heterosis is one of the most outstanding advancements in plant breeding. However, its genetic basis is not well understood. We used digital gene expression technology to investigate the transcriptomes of the mature maize embryo of an elite maize hybrid Zhengdan958 and its parental lines to screen differentially-expressed genes and to study(More)
ZD958 was the most low-N-efficient line among five maize and two teosinte lines. Zea parviglumis and Zea diploperennis were insensitive to N limitation. Maize and teosinte genetically and evolutionarily diverged in gene regulation. GDH2, ASN2, and T4 were consistently down-regulated across seven lines. Maternal asymmetric inheritance and heterosis vigor(More)
A novel adaptive beamforming algorithm against large direction-of-arrival (DOA) mismatch without using optimization toolboxes is proposed. In contrast to previous works, this new beamformer employs two reconstructed matrices, the interference-plus-noise covariance matrix and the desired signal-plus-noise covariance matrix, instead of their real sample(More)
The signal integrity of the circuit, as one of the important design issues in high-speed digital system, is usually seriously affected by the signal reflection due to impedance mismatch in the DDR3 bus. In this paper, a novel optimization method is proposed to optimize impedance mismatch and reduce the signal reflection. Specifically, by applying the via(More)
In the presence of the direction of arrival (DOA) mismatch, the performance of generalized sidelobe canceller (GSC) may suffer severe degradation due to the gain loss of the desired signal in the main array and cancellation. In this paper, one effective GSC algorithm is proposed to improve the robustness against the DOA mismatch of the desired signal.(More)
Root system architecture (RSA) plays an important role in phosphorus (P) acquisition, but enhancing P use efficiency (PUE) in maize via genetic manipulation of RSA has not yet been reported. Here, using a maize recombinant inbred line (RIL) population, we investigated the genetic relationships between PUE and RSA, and developed P-efficient lines by(More)
In this article, we propose a space–time adaptive processing scheme via a generalized sidelobe canceler (GSC) architecture for airborne multiple-input multiple-output (MIMO) radar. This scheme employs the waveforms extracted by the matched filter bank that is cascaded at the receive end and utilizes digital beamforming technique to synthesize a certain(More)