Huiyan Jin

Learn More
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are(More)
RNA polymerase II (RNAPII) lies at the core of dynamic control of gene expression. Using 53 RNAPII point mutants, we generated a point mutant epistatic miniarray profile (pE-MAP) comprising ∼60,000 quantitative genetic interactions in Saccharomyces cerevisiae. This analysis enabled functional assignment of RNAPII subdomains and uncovered connections between(More)
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single(More)
Transcription initiation by RNA Polymerase II (Pol II) is an essential step in gene expression and regulation in all organisms. Initiation requires a great number of factors, and defects in this process can be apparent in the form of altered transcription start site (TSS) selection in Saccharomyces cerevisiae (Baker's yeast). It has been shown previously(More)
The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both(More)
21 22 23 The active site of multicellular RNA polymerases have a " trigger loop " (TL) that 24 multitasks in substrate selection, catalysis, and translocation. To dissect the 25 Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we 26 quantitatively phenotyped nearly all TL single variants en masse. Three major mutant 27(More)
Bone surfaces attract hematopoietic and nonhematopoietic cells, such as osteoclasts (OCs) and osteoblasts (OBs), and are targeted by bone metastatic cancers. However, the mechanisms guiding cells toward bone surfaces are essentially unknown. Here, we show that the Gαi protein-coupled receptor (GPCR) EBI2 is expressed in mouse monocyte/OC precursors (OCPs)(More)
  • 1