Learn More
Image resizing can be achieved more effectively if we have a better understanding of the image semantics. In this paper, we analyze the <i>translational symmetry</i>, which exists in many real-world images. By detecting the symmetric lattice in an image, we can <i>summarize</i>, instead of only distorting or cropping, the image content. This opens a new(More)
Midsagittal plane (MSP) extraction from 3D brain images is considered as a promising technique for human brain symmetry analysis. In this paper, we present a fast and robust MSP extraction method based on 3D scale-invariant feature transform (SIFT). Unlike the existing brain MSP extraction methods, which mainly rely on the gray similarity, 3D edge(More)
In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the(More)
Structure-aware halftoning technique is one of the state-of-the-art algorithms for generating structure-preserving bitonal images. However, the slow optimization process prohibits its real-time application. This is due to its high computational cost of similarity measurement and iterative refinement. Unfortunately, the structure-aware halftoning cannot be(More)
Symmetry analysis for brain images has been considered as a promising technique for automatically extracting the pathological brain slices in conventional scanning. In this article, we present a fast and robust symmetry detection method for automatically extracting symmetry axis (fissure line) from a brain image. Unlike the existing brain symmetry detection(More)
Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging(More)
B-spline based deformable model is commonly used in recovering three-dimensional (3D) cardiac motion from tagged MRI due to its compact description, localized continuity and control flexibility. However, existing approaches usually ignore an important well-known fact that myocardial tissue is incompressible. In this paper, we propose to reconstruct 3D(More)
Automatic plant recognition has become a research focus and received more and more attentions recently. However, existing methods usually only focused on leaf recognition from small databases that usually only contain no more than hundreds of species, and none of them reported a stable performance in either recognition accuracy or recognition speed when(More)
With the rapid development of network technology and multimedia technology, the researchers found that the neurobiology of human vision, computer vision and image and video processing and efficient combination for image, video can provide a more good solution of content retrieval applications, on the one hand, the simulation and study of visual attention(More)