Learn More
Ets proteins constitute a family of conserved sequence-specific DNA-binding proteins and function as transcription factors. ETS1 plays important roles in differentiation, lymphoid cell development, invasiveness and angiogenesis. Such diverse roles of ETS1 are likely to be dependent on its associated proteins. A yeast two-hybrid screen was conducted and here(More)
Ets proteins are a family of transcription factors that share an 85 amino acid conserved DNA binding domain, the ETS domain. Over 25 mammalian Ets family members control important biological processes, including cellular proliferation, differentiation, lymphocyte development and activation, transformation and apoptosis by recognizing the GGA core motif in(More)
ETS1, the founding member of Ets transcriptional factor family, plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. Previous work has shown that ETS1 represses tumorigenicity of colon carcinoma cells in vivo, and that the p42-ETS1 protein bypasses a defect in apoptosis in(More)
Sphingosine kinase (SphK) is a conserved lipid kinase that catalyzes formation of important regulators of inter- and intracellular signaling, sphingosine-1 phosphate (S1P), and dihydrosphingosine 1-phosphate (dhS1P). In this study, we investigated the role of SphK1 in the regulation of expression of matrix metalloproteinase 1 (MMP1) in dermal fibroblasts, a(More)
ETS1 is a member of the evolutionarily conserved family of ets genes, which are transcription factors that bind to unique DNA sequences, either alone or by association with other proteins. In this study, we have used the yeast two-hybrid system to identify an ETS1 interacting protein. The ETS1 N-terminal amino acid region was used as bait and an interaction(More)
The ETS1 transcription factor is a member of the Ets family of conserved sequence-specific DNA-binding proteins. ETS1 has been shown to play important roles in various cellular processes such as proliferation, differentiation, lymphoid development, motility, invasion and angiogenesis. These diverse roles of ETS1 are likely to be dependent on specific(More)
Alterations, especially homozygous deletions, of the putative tumor suppressor gene, p16 (p16INK4A, MTS1, CDKN2) have been found in tumor cell lines from a variety of neoplasms. Recent studies have reported frequent p16 gene deletions in cell lines from squamous cell carcinomas of the head and neck (SCCHN), although the prevalence of alterations was(More)
ETS1 is a cellular homologue of the product of the viral ets oncogene of the E26 virus, and it functions as a tissue-specific transcription factor. It plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. ETS1 controls the expression of critical genes involved in these(More)
It has been suggested that the frequency, type, and location of p53 mutations (mutational spectra) can be linked to specific exogenous and endogenous carcinogenic agents and processes. Squamous cell carcinoma of the head and neck (SCCHN) provides an excellent tumor model to evaluate the utility of the p53 mutational spectra, given that it has well-defined(More)