Huiman Kang

Learn More
Self-assembling materials spontaneously form structures at length scales of interest in nanotechnology. In the particular case of block copolymers, the thermodynamic driving forces for self-assembly are small, and low-energy defects can get easily trapped. We directed the assembly of defect-free arrays of isolated block copolymer domains at densities up to(More)
Self-assembling block copolymers are of interest for nanomanufacturing due to the ability to realize sub-100 nm dimensions, thermodynamic control over the size and uniformity and density of features, and inexpensive processing. The insertion point of these materials in the production of integrated circuits, however, is often conceptualized in the short term(More)
We investigate the assembly of block copolymer-nanoparticle composite films on chemically nanopatterned substrates and present fully three-dimensional simulations of a coarse grain model for these hybrid systems. The location and distribution of nanoparticles within the ordered block copolymer domains depends on the thermodynamic state of the composite in(More)
We present a control strategy for the facile placement of densely packed nanomaterial arrays (i.e., nanoparticles and nanorods) on surface reconstructed polystyrene-block-poly(methyl methacrylate) thin film patterns. The surface reconstruction of perpendicularly oriented block copolymer thin films, which were produced by a treatment with selective solvent(More)
The directed assembly of lamella-forming copolymer systems on substrates chemically patterned with rough stripes has been studied using a Helfrich-type, phenomenological theory and Single-Chain-in-Mean-Field (SCMF) simulations. The stripe period matches that of the lamellar spacing in the bulk. The effect of the line edge roughness (LER) of the substrate(More)
Ternary blends of cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and low molecular weight PS and PMMA were directed to assemble on chemically patterned surfaces with hexagonal symmetry. The chemical patterns consisted of strongly PMMA preferential spots, patterned by electron-beam lithography, in a matrix of PS. The spot-to-spot(More)
  • 1