Learn More
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmias among old people. It causes serious long-term health problems affecting the quality of life. It has been suggested that the autonomic nervous system is involved in the onset and maintenance of AF in human. However, investigation of its pathogenesis and potential treatment has been hampered(More)
PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of β-adrenergic receptor-mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this(More)
BACKGROUND Aortic aneurysm is a common but life-threatening disease among the elderly, for which no effective medical therapy is currently available. Activation of prostaglandin E(2) (PGE(2)) is known to increase the expression of matrix metalloproteinase (MMP) and the release of inflammatory cytokines, and may thus exacerbate abdominal aortic aneurysm(More)
The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline)(More)
Cyclic adenosine monophosphate (cAMP) and Ca2+ levels may oscillate in harmony within excitable cells; a mathematical oscillation loop model, the Cooper model, of these oscillations was developed two decades ago. However, in that model all adenylyl cyclase (AC) isoforms were assumed to be inhibited by Ca2+, and it is now known that the heart expresses(More)
Type 5 adenylyl cyclase (AC5) plays an important role in the development of chronic catecholamine stress-induced heart failure and arrhythmia in mice. Epac (exchange protein activated by cAMP), which is directly activated by cAMP independent of protein kinase A, has been recently identified as a novel mediator of cAMP signaling in the heart. However, the(More)
Myocardial β-adrenergic receptor (β-AR) β1- and β2-subtypes are highly homologous, but play opposite roles in cardiac apoptosis and heart failure, as do cardiac adenylyl cyclase (AC) subtypes 5 (AC5) and 6 (AC6): β1-AR and AC5 promote cardiac remodeling, while β2-AR and AC6 activate cell survival pathways. However, the mechanisms involved remain poorly(More)
Clenbuterol (CB), a selective β2-adrenergic receptor (AR) agonist, induces muscle hypertrophy and counteracts muscle atrophy. However, it is paradoxically less effective in slow-twitch muscle than in fast-twitch muscle, though slow-twitch muscle has a greater density of β-AR We recently demonstrated that Epac1 (exchange protein activated by cyclic AMP(More)
Pro-inflammatory cytokines are released in septic shock and impair cardiac function via the Jak-STAT pathway. It is well known that sympathetic and thus catecholamine signaling is activated thereafter to compensate for cardiac dysfunction. The mechanism of such compensation by catecholamine signaling has been traditionally understood to be cyclic(More)
Pro-inflammatory cytokines are released in septic shock and impair cardiac function via the Jak-STAT pathway. It is well known that sympathetic stimulation leads to coupling of the β-adrenergic receptor/Gs/adenylyl cyclase, a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP, thereby stimulating protein kinase A (PKA) and ultimately(More)
  • 1