Huijun Zhong

Learn More
At clinical concentrations, the potent intravenous general anesthetic etomidate enhances gamma-aminobutyric acid, type A (GABA(A)) receptor activity elicited with low gamma-aminobutyric acid (GABA) concentrations, whereas much higher etomidate concentrations activate receptors in the absence of GABA. Therefore, GABA(A) receptors may possess two types of(More)
The peripheral control of breathing is mediated by O2-sensitive carotid body (CB) type 1 cells, which express multiple neurotransmitters including the monoamines, dopamine and serotonin (5-HT). Whereas dopamine has been extensively studied, 5-HT has received little attention. Here, to elucidate the role of 5-HT in CB chemotransmission, we used(More)
GABA is expressed in carotid body (CB) chemoreceptor type I cells and has previously been reported to modulate sensory transmission via presynaptic GABA(B) receptors. Because low doses of clinically important GABA(A) receptor (GABA(A)R) agonists, e.g. benzodiazepines, have been reported to depress afferent CB responses to hypoxia, we investigated the(More)
BACKGROUND The general anesthetic etomidate acts via gamma-aminobutyric acid type A (GABA(A)) receptors, enhancing activation at low GABA and prolonging deactivation. Azi-etomidate is a photo-reactive etomidate derivative with similar pharmacological actions, which has been used to identify putative binding sites. The authors examine the irreversible(More)
  • 1