Huifang Jiang

Learn More
One hundred and forty-six highly polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 196 peanut (Arachis Hypogaea L.) cultivars which had been extensively planted in different regions in China. These SSR markers amplified 440 polymorphic bands with an average of 2.99, and the average gene(More)
Cultivated peanut, or groundnut (Arachis hypogaea L.), is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). In recent years, many efforts have been made to construct linkage maps in cultivated peanut, but almost all of these maps were constructed using low-throughput molecular markers, and most show a low density, directly(More)
Ethylene-responsive factor (ERF) play an important role in regulating gene expression in plant development and response to stresses. In peanuts (Arachis hypogaea L.), which produce flowers aerially and pods underground, only a few ERF genes have been identified so far. This study identifies 63 ERF unigenes from 247,313 peanut EST sequences available in the(More)
Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A peanut (Arachis hypogaea L.) mini-core collection in China comprising 298 accessions was genotyped using 109 simple sequence repeat (SSR) markers, which identified 554 SSR alleles and phenotyped for 15 agronomic traits in three different(More)
Cultivated peanut (Arachis hypogaea L.), an important source of edible oil and protein, is widely grown in tropical and subtropical areas of the world. Genetic improvement of yield-related traits is essential for improving yield potential of new peanut varieties. Genomics-assisted breeding (GAB) can accelerate the process of genetic improvement but requires(More)
Aflatoxin contamination caused by Aspergillus flavus in peanut (Arachis hypogaea) including in pre- and post-harvest stages seriously affects industry development and human health. Even though resistance to aflatoxin production in post-harvest peanut has been identified, its molecular mechanism has been poorly understood. To understand the mechanism of(More)
Late leaf spot (LLS) is one of the most serious foliar diseases affecting peanut worldwide leading to huge yield loss. To understand the genetic basis of LLS and assist breeding in the future, we conducted quantitative trait locus (QTL) analysis for LLS and three plant-type-related traits including height of main stem (HMS), length of the longest branch(More)
Bacterial wilt (BW) caused by Ralstonia solanacearum is an important constraint to peanut (Arachis hypogaea L.) production in several Asian and African countries, and planting BW-resistant cultivars is the most feasible method for controlling the disease. Although several BW-resistant peanut germplasm accessions have been identified, the genetic diversity(More)
SSR-based QTL mapping provides useful information for map-based cloning of major QTLs and can be used to improve the agronomic and quality traits in cultivated peanut by marker-assisted selection. Cultivated peanut (Arachis hypogaea L.) is an allotetraploid species (AABB, 2n = 4× = 40), valued for its edible oil and digestible protein. Linkage mapping has(More)
Microsatellite or simple sequence repeat (SSR) is one of the most widely distributed molecular markers that have been widely utilized to assess genetic diversity and genetic mapping for important traits in plants. However, the understanding of microsatellite characteristics in Arachis species and the currently available amount of high-quality SSR markers(More)