Sjaak F L Klis19
Wilko Grolman16
John C M J de Groot8
19Sjaak F L Klis
16Wilko Grolman
8John C M J de Groot
Learn More
Exogenous delivery of neurotrophic factors into the cochlea of deafened animals rescues spiral ganglion cells (SGCs) from degeneration. To be clinically relevant for human cochlear implant candidates, the protective effect of neurotrophins should persist after cessation of treatment and the treated SGCs should remain functional. In this study, the survival(More)
Little is known about the maturation of functional maps in the primary auditory cortex (A1) after the onset of sensory experience. We used intrinsic signal imaging to examine the development of the tonotopic organization of ferret A1 with respect to contralateral and ipsilateral tone stimulation. Sound-evoked responses were recorded as early as postnatal(More)
The midbrain inferior colliculus (IC) is implicated in coding sound location, but evidence from behaving primates is scarce. Here we report single-unit responses to broadband sounds that were systematically varied within the two-dimensional (2D) frontal hemifield, as well as in sound level, while monkeys fixated a central visual target. Results show that IC(More)
This paper describes optical imaging of the auditory cortex in the anesthetized ferret, particularly addressing optimization of narrowband stimuli. The types of sound stimuli used were tone-pip trains and sinusoidal frequency and amplitude modulated (SFM and SAM) tones. By employing short illumination wavelengths (546 nm), we have successfully characterized(More)
Because of its central position in the ascending auditory pathway, its large number of converging auditory brainstem inputs, and its fundamental role as a relay to auditory cortex and midbrain superior colliculus, the mammalian inferior colliculus (IC) is regarded pivotal for the integration of acoustic spectral-temporal cues to mediate sound-evoked(More)
Spiral ganglion cell (SGC) degeneration following hair cell loss can be prevented by administration of exogenous neurotrophic factors. Many of these neurotrophic factors, in particular the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), have been described to be involved in the development of the rodent cochlea. While(More)
In animal models of deafness, administration of an aminoglycoside in combination with a loop diuretic is often applied to produce a rapid loss of cochlear hair cells. However, the extent to which surviving hair cells remain functional after such a deafening procedure varies. In a longitudinal electrocochleographical study, we investigated the variability of(More)
BACKGROUND Although some therapies may be beneficial for some patients in reducing tinnitus, there is no curative therapy. Repetitive transcranial magnetic stimulation (rTMS) has been applied as a treatment for chronic tinnitus, but the effect remains controversial. MATERIAL AND METHODS Fifty patients were treated with rTMS or placebo. Treatment consisted(More)
When guinea pigs are deafened with ototoxic drugs spiral ganglion cells (SGCs) degenerate progressively. Application of neurotrophins can prevent this process. Morphological changes of rescued SGCs have not been quantitatively determined yet. It might be that SGCs treated with neurotrophins are more vulnerable than SGCs in cochleae of normal-hearing guinea(More)
Several studies have shown that treatment with various neurotrophins protects spiral ganglion cells (SGCs) from degeneration in hair-cell deprived cochleas. In most of these studies the neurotrophins are delivered by means of intracochlear delivery methods. Recently, other application methods that might be more suited in cochlear implant patients have been(More)