Hui-xia Chuan

  • Citations Per Year
Learn More
Successful colonization of Mansonia dives, the principal vector of subperiodic Brugia malayi was established in a field insectary. Mean egg clusters laid on Eichhornia crassipes, Pistia stratiotes, Homalomena cordata and polystyrofoam strips were 12.0, 10.4, 9.5 and 13.7 respectively. However, the mean number of first instar larvae hatched from each egg(More)
The fluorescent ATP analogue 8-azido-2'-O-[14C]dansyl-ATP ([ 14C]AD-ATP) was used to probe the ATP-binding site in the catalytic (C) subunit of cAMP-dependent protein kinase. AD-ATP was found to inhibit the phosphotransferase activity of C subunit with extremely high specificity. Complete inhibition was observed when each mol of C subunit was covalently(More)
The photoaffinity reagent 8-azido-2'-O-[14C]dansyl-ATP (AD-ATP) has been synthesized for labeling and monitoring the active sites of ATPases and kinases. In its first application, the reagent is used to explore the active site of adenylate kinase from rabbit muscle. In the dark, AD-ATP inhibits adenylate kinase reversibly and competitively with KI = 0.25(More)
OBJECTIVE To improve the mini-modified semi solid rappaport vassiliadis most probable number (mini-MSRV MPN) method for Salmonella detection. METHODS Based on the mini-MSRV MPN method,Buffered Peptone Water (BPW) was modified as one step enrichment medium and Modified Semi Solid Rappaport Vassiliadis (MSRV) medium was ameliorated as modified MSRV for(More)
The compound P1-(5'-adenosyl)-P2-N-(2-mercaptoethyl)diphosphoramidate (AMEDA) was synthesized as an ATP analogue for in situ reaction with the 4-nitro-2,1,3-[14C]benzoxadiazolyl group (NBD) in the labeled F1-ATPase (F1). AMEDA was found to reactivate O-[14C]NBD-F1 via a dual-path mechanism. The principal path involves the binding of AMEDA at a site in F1(More)
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl) [alpha-32P]ATP (FDNP-[alpha-32P]ATP) and 3'-O-(5-fluoro-2,4-dinitrophenyl) [8-14C]ATP (FDNP-[14C]ATP) were synthesized and used to characterize the structure and function of the three active sites in F1-ATPase. FDNP-[alpha-32P]ATP was found to bind covalently to F1 up to two DNP-[alpha-32P]ATP labels(More)
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether (FDNP-ADP) and 3'-O-(5-fluoro-2,4-dinitrophenyl)ATP ether (FDNP-ATP) were synthesized and characterized. FDNP[14C]ADP was found to label the active site of mitochondrial F1-ATPase slowly at room temperature but with high specificity. F1 was effectively protected from the labeling reagent by(More)
  • 1