Learn More
Ure2 is the protein determinant of the [URE3] prion phenotype in Saccharomyces cerevisiae and consists of a flexible N-terminal prion-determining domain and a globular C-terminal glutathione transferase-like domain. Overexpression of the type I Hsp40 member Ydj1 in yeast cells has been found to result in the loss of [URE3]. However, the mechanism of prion(More)
The Saccharomyces cerevisiae protein Ure2 functions as a regulator of nitrogen metabolism and as a glutathione-dependent peroxidase. Ure2 also has the characteristics of a prion, in that it can undergo a heritable conformational change to an aggregated state; the prion form of Ure2 loses the regulatory function, but the enzymatic function appears to be(More)
Extremely low frequency electromagnetic field (ELF-EMF) exposure is attracting increased attention as a possible disease-inducing factor. The in vivo effects of short-term and long-term ELF-EMF exposure on male Drosophila melanogaster were studied using transcriptomic analysis for preliminary screening and QRT-PCR for further verification. Transcriptomic(More)
In this study, we investigated the transcriptional response to 50 Hz extremely low frequency electromagnetic field (ELF-EMF) and 2.0 GHz radio frequency electromagnetic field (RF-EMF) exposure by Illumina sequencing technology using budding yeast as the model organism. The transcription levels of 28 genes were upregulated and those of four genes were(More)
Temperature is an important factor in research on the biological effects of extremely low-frequency electromagnetic field (ELF-EMF), but interactions between ELF-EMF and temperature remain unknown. The effects of ELF-EMF (50 Hz, 3 mT) on the lifespan, locomotion, heat shock response (HSR), and oxidative stress (OS) of Canton-Special (CS) and mutant w1118(More)
  • 1