Learn More
Repeated cocaine treatment and withdrawal produces changes in brain function thought to be involved in relapse to drug use. Withdrawal from repeated cocaine reduced in vivo extracellular glutamate in the nucleus accumbens of rats by decreasing the exchange of extracellular cystine for intracellular glutamate. In vivo restoration of cystine/glutamate(More)
Basal extracellular glutamate sampled in vivo is present in micromolar concentrations in the extracellular space outside the synaptic cleft, and neither the origin nor the function of this glutamate is known. This report reveals that blockade of glutamate release from the cystine-glutamate antiporter produced a significant decrease (60%) in extrasynaptic(More)
Repeated cocaine produces enduring neuroadaptations in glutamate transmission in the nucleus accumbens that are thought to contribute to addiction. Group II metabotropic glutamate autoreceptors (mGluR2/3) regulate glutamate release, and this study investigates whether repeated cocaine injection produces long-lasting alterations in mGluR2/3 content,(More)
Recently, a functional disconnectivity hypothesis of schizophrenia has been proposed for the physiological explanation of behavioral syndromes of this complex mental disorder. In this paper, we aim at further examining whether syndromes of schizophrenia could be decoded by some special spatiotemporal patterns of resting-state functional connectivity. We(More)
– The Object Management Group (OMG) is in the process of defining a UML Profile for Schedulability, Performance and Time that will enable the construction of models for making quantitative predictions regarding these characteristics. The paper proposes a graph-grammar based method for transforming automatically a UML model annotated with performance(More)
Plants depend on light signals to modulate many aspects of their development and optimize their photosynthetic capacity. Phytochromes (phys), a family of photoreceptors, initiate a signal transduction pathway that alters expression of a large number of genes to induce these responses. Recently, phyA and phyB were shown to bind members of a basic(More)
We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and(More)
We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data(More)
BACKGROUND Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by(More)
Determining how somatic copy number alterations (SCNAs) promote cancer is an important goal. We characterized SCNA patterns in 4,934 cancers from The Cancer Genome Atlas Pan-Cancer data set. Whole-genome doubling, observed in 37% of cancers, was associated with higher rates of every other type of SCNA, TP53 mutations, CCNE1 amplifications and alterations of(More)