Hugues de Thé

Learn More
In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the(More)
Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a(More)
The role of cellular proteins in the replication of retroviruses, especially during virus assembly, has been partly unraveled by recent studies. Paradoxically, little is known about the route taken by retroviruses to reach the nucleus at the early stages of infection. To get insight into this stage of virus replication, we have studied the trafficking of(More)
Retinoic acid and arsenic trioxide target the protein stability and transcriptional repression activity of the fusion oncoprotein PML-RARA, resulting in regression of acute promyelocytic leukemia (APL). Phenotypically, retinoic acid induces differentiation of APL cells. Here we show that retinoic acid also triggers growth arrest of leukemia-initiating cells(More)
Both all-trans retinoic acid (ATRA) and arsenic trioxide (As(2)O(3)) have proven to be very effective in obtaining high clinical complete remission (CR) rates in acute promyelocytic leukemia (APL), but they had not been used jointly in an integrated treatment protocol for remission induction or maintenance among newly diagnosed APL patients. In this study,(More)
The fusion oncogene, promyelocytic leukaemia (PML)-retinoic acid receptor-α (RARA), initiates acute promyelocytic leukaemia (APL) through both a block to differentiation and increased self-renewal of leukaemic progenitor cells. The current standard of care is retinoic acid (RA) and chemotherapy, but arsenic trioxide also cures many patients with APL, and an(More)
Promyelocytic leukemia (PML) is the organizer of nuclear matrix domains, PML nuclear bodies (NBs), with a proposed role in apoptosis control. In acute promyelocytic leukemia, PML/retinoic acid receptor (RAR) alpha expression disrupts NBs, but therapies such as retinoic acid or arsenic trioxide (As2O3) restore them. PML is conjugated by the ubiquitin-related(More)
As(2)O(3) cures acute promyelocytic leukemia (APL) by initiating PML/RARA oncoprotein degradation, through sumoylation of its PML moiety. However, how As(2)O(3) initiates PML sumoylation has remained largely unexplained. As(2)O(3) binds vicinal cysteines and increases reactive oxygen species (ROS) production. We demonstrate that upon As(2)O(3) exposure, PML(More)
PURPOSE Patient-derived xenograft models are considered to represent the heterogeneity of human cancers and advanced preclinical models. Our consortium joins efforts to extensively develop and characterize a new collection of patient-derived colorectal cancer (CRC) models. EXPERIMENTAL DESIGN From the 85 unsupervised surgical colorectal samples(More)
Retroviruses hijack cellular machineries to productively infect their hosts. During the early stages of viral replication, proviral integration relies on specific interactions between components of the preintegration complex and host chromatin-bound proteins. Here, analyzing the fate of incoming primate foamy virus, we identify a short domain within the(More)