Hugues de Riedmatten

Learn More
We demonstrated entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near-maximum polarization entanglement. Entanglement is verified by way of the(More)
We propose a quantum repeater protocol which builds on the well-known Duan-Lukin-Cirac-Zoller (DLCZ) protocol [L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature (London) 414, 413 (2001)10.1038/35106500], but which uses photon pair sources in combination with memories that allow to store a large number of temporal modes. We suggest to realize such(More)
We report significant improvements in the retrieval efficiency of a single excitation stored in an atomic ensemble and in the subsequent generation of strongly correlated pairs of photons. A 50% probability of transforming the stored excitation into one photon in a well-defined spatio-temporal mode at the output of the ensemble is demonstrated. These(More)
Matter and energy cannot be teleported (that is, transferred from one place to another without passing through intermediate locations). However, teleportation of quantum states (the ultimate structure of objects) is possible: only the structure is teleported--the matter stays at the source side and must be already present at the final location. Several(More)
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and(More)
The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated(More)
We report experimental distribution of time-bin entangled qubits over 50 km of optical fibers. Using actively stabilized preparation and measurement devices we demonstrate violation of the Clauser-Horne-Shimony-Holt Bell inequality by more than 15 standard deviations without removing the detector noise. In addition we report a proof-of principle experiment(More)
Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is an essential requirement for the implementation of quantum networks and quantum repeaters. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases, and(More)
A long distance quantum teleportation experiment with a fiber-delayed Bell state measurement (BSM) is reported. The source creating the qubits to be teleported and the source creating the necessary entangled state are connected to the beam splitter realizing the BSM by two 2 km long optical fibers. In addition, the teleported qubits are analyzed after 2.2(More)
The future challenge of quantum communication is scalable quantum networks, which require coherent and reversible mapping of photonic qubits onto atomic systems (quantum memories). A crucial requirement for realistic networks is the ability to efficiently store multiple qubits in one quantum memory. In this study, we show a coherent and reversible mapping(More)