Learn More
The precise mechanisms that underlie acute changes in tissue water diffusion following cerebral ischemia or related insults such as glutamate exposure remain unexplained, but it has been suggested that these may be caused by cell swelling due to water uptake. This study was undertaken to compare the changes observed in diffusion-weighted MR images with(More)
Intrastriatal injection of the excitotoxin N-methyl-D-aspartate (NMDA) in neonatal rat brain resulted in an acute ipsilateral decrease of the apparent diffusion coefficient (ADC) of brain tissue water, as measured with diffusion-weighted MRI. The early diffusion changes were accompanied by only mild changes in the overall metabolic status as measured by in(More)
The present study was undertaken to characterize the formation of ischemic brain edema using diffusion-weighted and T2-weighted magnetic resonance imaging in a rat model of focal ischemia. The extent of edema formation was measured from multislice diffusion-weighted and T2-weighted spin-echo images acquired at various times after ischemia. The spin-spin(More)
Localized proton spectroscopy was used to monitor changes in metabolism and the biophysical status of tissue water in cat brain induced by occlusion of the middle cerebral artery. Changes in the intensity of N-acetyl-aspartate (NAA), total creatine (tCr), and lactate (Lac) signals in localized volumes of interest in the ischemic hemisphere were quantified(More)
The aim of this study is to characterize the evolution of excitotoxic damage in neonatal rat brain by diffusion-weighted and T2-weighted magnetic resonance imaging. Results are compared with histological findings. Magnetic resonance imaging was performed at various times (15 min, 24 h, 3 days and 5 days) after intrastriatal microinjection of(More)
The vulnerability of the rat brain to intracerebrally injected N-methyl-D-aspartate (NMDA) drastically changes with age. We evaluated the developmental changes in the early and late responses to NMDA using 1H magnetic resonance imaging (MRI), cortical impedance and histology. NMDA, injected in the striatum of rats at postnatal days (P) 4, 7, 10, 14 and 21,(More)
The purpose of this study was to evaluate the function of the GABAA receptor following transient forebrain ischaemia. The GABA-stimulated chloride (36Cl-) uptake into synaptoneurosomes was determined as an indicator of GABAA receptor function. Synaptoneurosomes were isolated from control rats and rats in which the forebrain was made ischaemic by way of the(More)
This article describes the use of non-invasive magnetic resonance (MR) methods for the characterization and monitoring of the pathophysiology of experimental brain injury in laboratory animals as a function of time and treatment. The impact of MR in brain research is primarily due to its non-invasive nature, thereby enabling repeated measurements in(More)
  • 1