Hugo Sánchez-Castillo

Learn More
Stimulus discrimination is the capacity of an organism to differentiate between stimuli and emit associated responses. The administration of the muscarinic antagonist scopolamine can be used as a stimulus by mammals in a discrimination task. The present study analyzes the contribution of the hippocampus in scopolamine discrimination and generalization. Male(More)
Organisms are capable of making decisions based on their ability to discriminate between different stimuli. This principle is fundamental for the adaptation of organisms to their environment, by emitting appropriate behaviors based on a previously acquired discriminative process. The present study analyzed the participation of the peripheral nervous system,(More)
Anticipation occurs on timescales ranging from milliseconds to hours to days. This paper relates the theoretical and methodological developments in the study of interval timing in the seconds, minutes and hours range to research on the anticipatory activity induced by regularly timed daily meals. Daily food-anticipatory activity (FAA) is entrained by(More)
Some of the behavioral effects of d-amphetamine (d-AMPH) are mediated by an increase in dopamine neurotransmission in the nucleus accumbens. However, there is evidence that gamma-amino-butyric-acid-B (GABA-B) receptors are involved in some behavioral effects of D-AMPH and cocaine. Here, we examined the effects of baclofen on the discriminative stimulus(More)
Throughout its evolutionary course, stress has remained as an adaptive response to stimuli that may jeopardize the integrity of an organism. Within this perspective, we can classify the stressors as psychological, physical or harmful to cardiovascular stability. However, when intense stressful events occur, there is a possibility of developing PTSD. This(More)
Organisms are constantly extracting information from the temporal structure of the environment, which allows them to select appropriate actions and predict impending changes. Several lines of research have suggested that interval timing is modulated by the dopaminergic system. It has been proposed that higher levels of dopamine cause an internal clock to(More)
Administration of the alkylating agent carmustine to pregnant mice induces hyperlocomotion in the offspring. Motor performance was evaluated by the rotarod task, which revealed that these animals have diminished Grab Frequency and a higher Performance Index, whereas Error of Latency and Latency to Fall were unaffected. Considering the recently revealed role(More)
  • 1