Hugo F. Martins

Learn More
So far, the optical pulses used in phase-sensitive OTDR (ΦOTDR) were typically engineered so as to have a constant phase along the pulse. In this work, it is demonstrated that by acting on the phase profile of the optical pulses, it is possible to introduce important conceptual and practical changes to the traditional ΦOTDR operation, thus opening a door(More)
Phase-sensitive optical time domain reflectometry (φOTDR) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. Up to now, φOTDRs have been used mostly for the measurement of sub-kHz vibrations, normally in the context of intrusion sensing. In this paper, the authors present an experimental(More)
We describe the use of a phase-sensitive optical time domain reflectometer (ΦOTDR) over an ultra-long Raman fiber laser cavity allowing fully distributed detection of vibrations over 125 km. Compared to a first-order Raman-assisted ΦOTDR, this scheme shows an enhanced signal-to-noise ratio (SNR). This is due to the fact that the relative(More)
BACKGROUND Endogenous retroviruses (ERVs) are genetic fossils of ancient retroviral integrations that remain in the genome of many organisms. Most loci are rendered non-functional by mutations, but several intact retroviral genes are known in mammalian genomes. Some have been adopted by the host species, while the beneficial roles of others remain unclear.(More)
Phase-sensitive optical time-domain reflectometry (φOTDR) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. We show in this Letter that modulation instability (MI) can induce a position-dependent signal fading in long-range φOTDR over conventional optical fibers. This fading leads to a complete(More)
This paper presents the first available report in the literature of a system aimed at the detection and classification of threats in the vicinity of a long gas pipeline. The system is based on phase-sensitive optical time-domain reflectometry technology for signal acquisition and pattern recognition strategies for threat identification. The system operates(More)
A major cause of faults in optical communication links is related to unintentional third party intrusions (normally related to civil/agricultural works) causing fiber breaks or cable damage. These intrusions could be anticipated and avoided by monitoring the dynamic strain recorded along the cable. In this work, a novel technique is proposed to implement(More)
This paper presents the first report on on-line and final blind field test results of a pipeline integrity threat surveillance system. The system integrates a machine+activity identification mode, and a threat detection mode. Two different pipeline sections were selected for the blind tests: One close to the sensor position, and the other 35 km away(More)
In this study, the authors present an experimental and theoretical description of the use of first order Raman amplification to improve the performance of a Phase-sensitive optical time domain reflectometer (φOTDR) when used for vibration measurements over very long distances. A special emphasis is given to the noise which is carefully characterized(More)
In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured(More)