Learn More
Prolonged periods of hypoxia are deleterious to higher brain functions and increase the likelihood of developing dementias. Here, we have used fluorimetric techniques to investigate the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores in type I cortical astrocytes, because such stores are crucial to various astrocyte functions, including(More)
Periods of chronic hypoxia, which can arise from numerous cardiorespiratory disorders, predispose individuals to the development of dementias, particularly Alzheimer's disease (AD). AD is characterized in part by the increased production of amyloid beta peptide (Abeta), which forms the extracellular plaques by which the disease can be identified post(More)
Oxidative stress induces neuronal apoptosis and is implicated in cerebral ischemia, head trauma, and age-related neurodegenerative diseases. An early step in this process is the loss of intracellular K(+) via K(+) channels, and evidence indicates that K(v)2.1 is of particular importance in this regard, being rapidly inserted into the plasma membrane in(More)
The ability of O(2) levels to regulate Ca(2+) signalling in non-excitable cells is poorly understood, yet crucial to our understanding of Ca(2+)-dependent cell functions in physiological and pathological situations. Here, we demonstrate that hypoxia mobilizes Ca(2+) from an intracellular pool in primary cultures of cortical astrocytes. This pool can also be(More)
Mutations in the presenilin 1 (PS1) gene lead to early-onset Alzheimer's disease with the S170F mutation causing the earliest reported age of onset. Expression of this, and other PS1 mutations, in SH-SY5Y cells resulted in significant loss of cellular viability compared to control cells. Basal Ca2+ concentrations in PS1 mutants were never lower than(More)
Alzheimer's disease is recognized post mortem by the presence of extracellular senile plaques, made primarily of aggregation of amyloid beta peptide (Abeta). This peptide has consequently been regarded as the principal toxic factor in the neurodegeneration of Alzheimer's disease. As such, intense research effort has been directed at determining its source,(More)
The Alzheimer's disease related peptide amyloid beta (Abeta) might have a physiological role in upregulating K channel currents in neurones. Earlier studies used the human form of Abeta1-40 on rat neurones. We sought to confirm our hypothesis by use of rat Abeta, which has no Alzheimer's association. In rat cerebellar granule neurones and HEK293 cells(More)
Robotic multiwell planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favored method.(More)
The amyloid beta peptide (Abeta) is a product of the sequential gamma- and beta-secretase cleavage of amyloid precursor protein. Inhibitors of secretase enzymes have been proposed as a potential therapeutic strategy in the treatment of Alzheimer's disease. Here, we investigate the effect of inhibiting these key enzymes on the viability of a range of cell(More)
The amyloid ␤ peptide (A␤) is a product of the sequential ␥-and ␤-secretase cleavage of amyloid precursor protein. Inhibitors of secretase enzymes have been proposed as a potential therapeutic strategy in the treatment of Alzheimer's disease. Here, we investigate the effect of inhibiting these key enzymes on the viability of a range of cell types. Treatment(More)