Learn More
Set1, the yeast histone H3-lysine 4 (H3-K4) methylase, is recruited by the Pol II elongation machinery to a highly localized domain at the 5' portion of active mRNA coding regions. Set1 association depends upon the TFIIH-associated kinase that phosphorylates the Pol II C-terminal domain (CTD) and mediates the transition between initiation and elongation,(More)
Using high-density oligonucleotide arrays representing essentially all nonrepetitive sequences on human chromosomes 21 and 22, we map the binding sites in vivo for three DNA binding transcription factors, Sp1, cMyc, and p53, in an unbiased manner. This mapping reveals an unexpectedly large number of transcription factor binding site (TFBS) regions, with a(More)
The amino-terminal histone tails are subject to covalent post-translational modifications such as acetylation, methylation, and phosphorylation. In the histone code hypothesis, these exposed and unstructured histone tails are accessible to a repertoire of regulatory factors that specifically recognize the various modified histones, thereby generating(More)
Genome-wide location analysis indicates that the yeast nucleosome-remodeling complex RSC has approximately 700 physiological targets and that the Rsc1 and Rsc2 isoforms of the complex behave indistinguishably. RSC is associated with numerous tRNA promoters, suggesting that the complex is recruited by the RNA polymerase III transcription machinery. At RNA(More)
In yeast cells, the Rtf1 and Paf1 components of the Paf1 transcriptional elongation complex are important for recruitment of Set1, the histone H3-lysine 4 (H3-Lys4) methylase, to a highly localized domain at the 5' portion of active mRNA coding regions. Here, we show that Rtf1 is essential for global methylation of H3-Lys4 and H3-Lys79, but not H3-Lys36.(More)
Mammalian preimplantation embryonic development (PED) is thought to be governed by highly conserved processes. While it had been suggested that some plasticity of conserved signaling networks exists among different mammalian species, it was not known to what extent modulation of the genomes and the regulatory proteins could "rewire" the gene regulatory(More)
The N-terminal tails of core histones are subjected to multiple covalent modifications, including acetylation, methylation, and phosphorylation. Similar to acetylation, histone methylation has emerged as an important player in regulating chromatin dynamics and gene activity. Histone methylation occurs on arginine and lysine residues and is catalyzed by two(More)
Methylation of lysine-79 (K79) within the globular domain of histone H3 by Dot1 methylase is important for transcriptional silencing and for association of the Sir silencing proteins in yeast. Here, we show that the level of H3-K79 methylation is low at all Sir-dependent silenced loci but not at other transcriptionally repressed regions. Hypomethylation of(More)
Dot1 is a non-SET domain protein that methylates histone H3 at lysine 79, a surface-exposed residue that lies within the globular domain. In the context of a nucleosome, H3 lysine 79 is located in close proximity with lysine 123 of histone H2B, a major site for ubiquitination by Rad6. Here we show that Rad6-mediated ubiquitination of H2B lysine 123 is(More)
We introduce the GibbsModule algorithm for de novo detection of cis-regulatory motifs and modules in eukaryote genomes. GibbsModule models the coexpressed genes within one species as sharing a core cis-regulatory motif and each homologous gene group as sharing a homologous cis-regulatory module (CRM), characterized by a similar composition of motifs.(More)