Learn More
Clostridium acetobutylicum cells were collected from chemostats which were run at pH 4.3 or 6.0 and which produced either acetone-butanol or acetate-butyrate; they were used to determine the level of enzymes involved either in solvent or in acid formation. The highest activity of phosphotransacetylase, phosphotransbutyrylase, acetate kinase, and butyrate(More)
The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from(More)
When Clostridium acetobutylicum was grown in continuous culture under phosphate limitation (0.74 mM) at a pH of 4.3, glucose was fermented to butanol, acetone and ethanol as the major products. At a dilution rate of D=0.025 h−1 and a glucose concentration of 300 mM, the maximal butanol and acetone concentrations were 130 mM and 74 mM, respectively. 20% of(More)
Clostridia belong to those bacteria which are considered as obligate anaerobe, e.g. oxygen is harmful or lethal to these bacteria. Nevertheless, it is known that they can survive limited exposure to air, and often eliminate oxygen or reactive derivatives via NAD(P)H-dependent reduction. This system does apparently contribute to survival after oxidative(More)
Fermentation of whey by Clostridium acetobutylicum yielded butanol and acetone in a ratio of approximately 100:1. This ratio amounted to only 2:1 in synthetic media with glucose, lactose, or glucose plus galactose as substrates. Removal of citrate from whey and addition of minerals resulted in an increase in the amount of acetone produced. Experiments(More)
Thermophilic and amylolytic aerobic bacteria were isolated from soil through a selective enrichment procedure at 60 degrees C with starch as the carbon source. One of the isolates designated as HRO10 produced glucose aside from limit dextrin as the only hydrolysis product from starch and was characterized in detail. The starch-degrading enzymes produced by(More)
Clostridial acetone–butanol–ethanol (ABE) fermentation is a natural source for microbial n-butanol production and regained much interest in academia and industry in the past years. Due to the difficult genetic accessibility of Clostridium acetobutylicum and other solventogenic clostridia, successful metabolic engineering approaches are still rare. In this(More)
The alpha-amylase (1, 4-alpha-d-glucanohydrolase; EC 3.2.1.1) and alpha-glucosidase (alpha-d-glucoside glucohydrolase; EC 3.2.1.20) secreted by Geobacillus thermodenitrificans HRO10 were purified to homogeneity (13.6-fold; 11.5% yield and 25.4-fold; 32.0% yield, respectively) through a series of steps. The molecular weight of alpha-amylase was 58kDa, as(More)
The biosynthesis of the solvents 1-butanol and acetone is restricted to species of the genus Clostridium, a diverse group of Gram-positive, endospore forming anaerobes comprising toxin-producing strains as well as terrestrial non-pathogenic species of biotechnological impact. Among solventogenic clostridia, Clostridium acetobutylicum represents the model(More)
When Clostridium acetobutylicum was grown in continuous culture under glucose limitation at neutral pH and varying dilution rates the only fermentation products formed were acetate, butyrate, carbon dioxide and molecular hydrogen. The Y glucose max and (Y ATP max ) gluc exp values were 48.3 and 23.8 dry weight/mol, respectively. Acetone and butanol were(More)