Learn More
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was(More)
The Arabidopsis thaliana SOS1 protein is a putative Na+/H+ antiporter that functions in Na+ extrusion and is essential for the NaCl tolerance of plants. sos1 mutant plants share phenotypic similarities with mutants lacking the protein kinase SOS2 and the Ca2+ sensor SOS3. To investigate whether the three SOS proteins function in the same response pathway,(More)
High concentrations of Na+ in saline soils inhibit plant growth and reduce agricultural productivity. We report here that CaMV 35S promoter driven overexpression of the Arabidopsis thaliana SOS1 gene, which encodes a plasma membrane Na+/H+ antiporter, improves plant salt tolerance in A. thaliana. Transgenic plants showed substantial upregulation of SOS1(More)
Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for(More)
Salt cress (Thellungiella halophila) is a small winter annual crucifer with a short life cycle. It has a small genome (about 2 x Arabidopsis) with high sequence identity (average 92%) with Arabidopsis, and can be genetically transformed by the simple floral dip procedure. It is capable of copious seed production. Salt cress is an extremophile native to(More)
The Arabidopsis thaliana AtNHX1 gene encodes a vacuolar Na+/H+ antiporter that is important in salt tolerance. We report here the tissue distribution and regulation of AtNHX1 expression by salt stress and abscisic acid (ABA). The steady-state level of AtNHX1 transcript was up-regulated by treatment with NaCl, KCl or ABA. AtNHX1 promoter-GUS analysis in(More)
Salt Overly Sensitive 1 (SOS1), a plasma membrane Na+/H+ antiporter in Arabidopsis, is a salt tolerance determinant crucial for the maintenance of ion homeostasis in saline stress conditions. SOS1 mRNA is unstable at normal growth conditions, but its stability is substantially increased under salt stress and other ionic and dehydration stresses. In(More)
Histone modification in chromatin is one of the key control points in gene regulation in eukaryotic cells. Protein complexes composed of histone acetyltransferase or deacetylase, WD40 repeat protein, and many other components have been implicated in this process. Here, we report the identification and functional characterization of HOS15, a WD40-repeat(More)
We conducted an analysis of the topology of AtNHX1, an Arabidopsis thaliana vacuolar Na+/H+ antiporter. Several hydrophilic regions of the antiporter were tagged with a hemagglutinin epitope, and protease protection assays were conducted to determine the membrane topology of the antiporter by using yeast as a heterologous expression system. The overall(More)
Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, a genetic screen for salt overly sensitive (sos) mutants was performed in Arabidopsis. We present here the characterization of sos4 mutants and the positional cloning of the SOS4 gene. sos4 mutant plants are hypersensitive to Na(+),(More)