Learn More
This paper presents a new computational framework for modeling chemically reacting flow in anode-supported solid-oxide fuel cells ͑SOFC͒. Depending on materials and operating conditions, SOFC anodes afford a possibility for internal reforming or catalytic partial oxidation of hydrocarbon fuels. An important new element of the model is the capability to(More)
This paper reports experimental and modeling investigations of thermal methane reforming chemistry within porous Ni–YSZ anode materials. Because the reforming chemistry is difficult to observe directly in an operating fuel cell, a specially designed experiment is developed. In the experiment a 0.75 mm-thick anode is sandwiched between two small co-flowing(More)
A new capability is developed that enables the modeling of certain logistics-fuel reformers. The system described in this paper considers a shell-and-tube configuration for which the catalytic reforming chemistry is confined within the tubes. The models are designed to accommodate detailed gas-phase and catalytic reaction kinetics, possibly including(More)
This paper discusses model-predictive controllers (MPC) that can incorporate physical knowledge of fuel-cell behavior into real-time multiple-input–multiple-output (MIMO) process-control strategies. The controller development begins with a high-fidelity, transient, physical model that represents the physical and chemical processes responsible for fuel-cell(More)
A model-based interpretation of measured equilibrium conductivity and conductivity relaxation is developed to establish thermodynamic, transport, and kinetics parameters for multiple charged defect conducting (MCDC) ceramic materials. The present study focuses on 10% yttrium-doped barium zirconate (BZY10). In principle, using the Nernst-Einstein(More)
A novel co-flow heat exchanger intended for volumetrically efficient hydrogen production and utilizing catalytic surface combustion to drive endothermic steam reforming occurring in adjacent channels has been investigated experimentally and numerically. A single plate reactor has been developed for studying the complex interactions between H 2 or CH 4(More)
A laser-assisted atom-probe-tomographic (LAAPT) method has been developed and applied to measure and characterize the three-dimensional atomic and electronic nanostructure at an yttrium-doped barium zirconate (BaZr0.9Y0.1O3-δ, BZY10) grain boundary. Proton-conducting perovskites, such as BZY10, are attracting intense interest for a variety of energy(More)
  • 1