Huaxu Yu

Learn More
Laminins have dramatic and varied actions on neurons in vitro. However, their in vivo function in brain development is not clear. Here we show that knockout of laminin gamma1 in the cerebral cortex leads to defects in neuritogenesis and neuronal migration. In the mutant mice, cortical layer structures were disrupted, and axonal pathfinding was impaired.(More)
Laminins are extracellular matrix (ECM) proteins that play an important role in cellular function and tissue morphogenesis. In the peripheral nervous system (PNS), laminins are expressed in Schwann cells and participate in their development. Mutations in laminin subunits expressed in the PNS and in skeleton muscle may cause peripheral neuropathies and(More)
Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin gamma1 (lamgamma1) expression in the hippocampus. Lamgamma1 knockout (KO) and control mice had similar basal expression of kainate (KA) receptors, but(More)
The mechanisms controlling the differentiation of immature Schwann cells (SCs) into nonmyelinating SCs is not known. Laminins are extracellular matrix proteins critical for myelinating SC differentiation, but their roles in nonmyelinating SC development have not been established. Here, we show that the peripheral nerves of mutant mice with laminin-deficient(More)
OBJECTIVE To explore the effect of up-regulation of KA1 subunit of the kainate receptor on endoplasmic reticulum stress (ERS)-induced excitotoxic neurodegeneration in mouse hippocampus. METHODS Seventy adult male KM mice were subjected to microinjections into the hippocampus of kainic acid (KA) or 500, 1000, or 2000 µg/ml tunicamycin (TM). At 1, 2, 3, 4,(More)
  • 1