Learn More
—Vehicle-to-grid (V2G) as an essential network component of smart grid, provides services by periodically collecting the charging status of a battery vehicle (BV). A BV is normally associated with a default interest group (e.g., power grid operator). When the BV accesses its default charging or communication point, it works in the home mode. The BV may move(More)
Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in(More)
—Vehicle-to-grid (V2G) is emerging as an attractive paradigm in smart grid, and provides power and information services by periodically collecting power status of battery vehicles (BVs). During a BV's interaction with power grid, it may be in one of the following states: charging, fully-charged (FC), and discharging. In this paper, we identify that there(More)
— Vehicle-to-grid (V2G), involving both charging and discharging of battery vehicles (BVs), enhances the smart grid substantially to alleviate peaks in power consumption. In a V2G scenario, the communications between BVs and power grid may confront severe cyber security vulnerabilities. Traditionally, authentication mechanisms are solely designed for the(More)
—Along with radio frequency identification (RFID) becoming ubiquitous, security issues have attracted extensive attentions. Most studies focus on the single-reader and single-tag case to provide security protection, which leads to certain limitations for diverse applications. This paper proposes a grouping-proofs-based authentication protocol (GUPA) to(More)