Huanran Feng

Learn More
A small molecule named DR3TSBDT with dialkylthiol-substituted benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit was designed and synthesized for solution-processed bulk-heterojunction solar cells. A notable power conversion efficiency of 9.95% (certified 9.938%) has been achieved under AM 1.5G irradiation (100 mW cm(-2)), with an average PCE of 9.60%(More)
A series of acceptor-donor-acceptor simple oligomer-like small molecules based on oligothiophenes, namely, DRCN4T-DRCN9T, were designed and synthesized. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated. Except for DRCN4T, excellent performances were obtained for DRCN5T-DRCN9T. The devices based(More)
A series of solvents with different solubilities for DR3TBDTT and PC71 BM, and different boiling points, is used for solvent vapor annealing (SVA) treatment to systematically investigate the solvent-morphology-performance relationship. The presence of solvent molecules inside bulk-heterojunction (BHJ) thin films promotes the mobility of both donor and(More)
Five novel organic conjugated derivatives containing multifraction twisted acene units have been synthesized and characterized. These compounds and the model molecule 2-methyl-5,12-diphenyl-6:7,10:11-bisbenzotetracene emit strong blue light in diluted solution with quantum yields of 0.21-0.67, while in the solid state, except for the(More)
A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully(More)
A solution processed acceptor-donor-acceptor (A-D-A) small molecule with thieno[3,2-b]thiophene as the central building block and 2-(1,1-dicyanomethylene)-rhodanine as the terminal unit, DRCN8TT, was designed and synthesized. The optimized power conversion efficiency (PCE) of 8.11% was achieved, which is much higher than that of its analogue molecule(More)
Nonfullerene acceptor FDICTF (2,9-bis(2methylene-(3-(1,1-dicyanomethylene)indanone))-7,​12-​dihydro-​4,​4,​7,​7,​12,​12-​hexaoctyl-​4H-​cyclopenta[2″,​1″:5,​6;3″,​4″:5',​6']​diindeno[1,​2-​b:1',​2'-​b']dithiophene) modified by fusing the fluorene core in a precursor, yields 10.06% high power conversion efficiency, and demonstrates that the ladder and fused(More)
  • 1