Learn More
Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional(More)
Persistent aromatic pollutants are widely found in the effl uents from the pharmaceutical, petrochemical, dyestuff, pesticide, and other industries. Because of their high solubility in water, they transport into the environment widely and do harm to human health. Many studies have focused on the effi cient elimination of organic pollutants from aqueous(More)
Remarkable progress has been made in developing high performance organic field-effect transistors (OFETs) and the mobility of OFETs has been approaching the values of polycrystalline silicon, meeting the requirements of various electronic applications from electronic papers to integrated circuits. In this review, the key points for development of high(More)
BACKGROUND Recent research has indicated that mitochondrial adenosine triphosphate-sensitive potassium channels play an important role in cerebral protection, which involves in attenuating the calcium of mitochondria. However, the effect of diazoxide on cerebral ischemia-reperfusion and the role of spermine, the agonist of mitochondrial calcium uniporter(More)
It is known that mitochondrial ATP-sensitive potassium channels (mitoKATP) play a significant role in protecting cerebral function from ischemia-reperfusion injury, which is related with a decrease in the mitochondrial matrix calcium. However, the effect of mitochondrial calcium uniporter (MCU) on diazoxide-induced cerebral protection is still indistinct.(More)
Recently, some impressive progress has been made by functionalization of (hetero-)acenes, thiophenes, and arylenes with electron-defi cient constituents. [ 3–5 ] However, the development of air-stable, high mobility, n-type organic semiconductors for organic electronics is still highly emergent. The mobility of organic semiconductors depends on the effi(More)
Organic photoresponse materials and devices are critically important to organic optoelectronics and energy crises. The activities of photoresponse in organic materials can be summarized in three effects, photoconductive, photovoltaic and optical memory effects. Correspondingly, devices based on the three effects can be divided into (i) photoconductive(More)
This article focuses on the growth and transport properties of organic single-crystalline p-n junction nanoribbons. The development of organic nanoelectronics requires the fabrication of organic nanometer-sized p-n junctions for high-performance devices and integrated circuits. Here we demonstrate the formation of single-crystalline p-n junction nanoribbons(More)
The discovery of graphene has shocked the world because it proves the existence of 2D crystals, which theoretically predicted could not exist. The peculiar electronic structure of graphene suggests unique properties of 2D crystals which may be promising for applications in many fi elds such as nanoelectronics and sensors. [ 1–3 ] The bottleneck locates at(More)