Learn More
We consider regularized support vector machines (SVMs) and show that they are precisely equivalent to a new robust optimization formulation. We show that this equivalence of robust optimization and regularization has implications for both algorithms, and analysis. In terms of algorithms, the equivalence suggests more general SVM-like algorithms for(More)
We develop a new algorithm to cluster sparse unweighted graphs – i.e. partition the nodes into disjoint clusters so that there is higher density within clusters, and low across clusters. By sparsity we mean the setting where both the in-cluster and across cluster edge densities are very small, possibly vanishing in the size of the graph. Sparsity makes the(More)
— The integration of renewable energy generation, such as wind power, into the electric grid is difficult because of the source intermittency and the large distance between generation sites and users. This difficulty can be overcome through a transmission network with large-scale storage that not only transports power, but also mitigates against(More)
This paper considers the problem of clustering a partially observed unweighted graph—i.e., one where for some node pairs we know there is an edge between them, for some others we know there is no edge, and for the remaining we do not know whether or not there is an edge. We want to organize the nodes into disjoint clusters so that there is relatively dense(More)
In this work, we address the following matrix recovery problem: suppose we are given a set of data points containing two parts, one part consists of samples drawn from a union of multiple subspaces and the other part consists of outliers. We do not know which data points are outliers, or how many outliers there are. The rank and number of the subspaces are(More)