Learn More
Recently, PEGylation has been extensively employed to increase the circulation time of liposomes and enhance their accumulation in tumor tissue via the enhanced permeability and retention (EPR) effect; however, poly(ethylene glycol) (PEG) is unfavorable for the uptake of liposomes by tumor cells because of its steric hindrance. In this study, thiolytic(More)
In this study, a new drug carrier for brain delivery, lactoferrin-modified procationic liposome, was developed and evaluated in vitro and in vivo. The procationic liposomes (PCLs) were neutral or negatively charged at physiological pH, and when they touched brain capillary endothelial cells with the help of a brain-targeting ligand, lactoferrin (Lf), they(More)
The cell penetrating peptide TAT, which appears to enter cells with alacrity, can pass through the BBB efficiently. It has been indentified to enhance the brain delivery of the liposome. However, little was known about its mechanism. TAT contains a basic region consisting of six arginine and two lysine residues. These eight basic amino acids seem to be the(More)
Left ventricular hypertrophy is a maladaptive response to pressure overload and an important risk factor for heart failure. Intermedin (IMD), a multi-functional peptide, plays important roles in cardiovascular protection. In this study, we revealed an autophagy-dependent mechanism involved in IMD's protection against cardiac remodeling and cardiomyocyte(More)
SIRT6, a member of the NAD(+)-dependent class III deacetylase sirtuin family, has been revealed to play important roles in promoting cellular resistance against oxidative stress. The formation of reactive oxygen species (ROS) and oxidative stress are the crucial mechanisms underlying cellular damage and dysfunction in cardiac ischemia/reperfusion (I/R)(More)
The treatment of central nervous system diseases such as brain glioma is a major challenge due to the presence of the blood-brain barrier (BBB). A cell-penetrating peptide TAT (AYGRKKRRQRRR), which appears to enter cells with alacrity, was employed to enhance the delivery efficiency of normal drug formulation to the brain. Targeting liposomal formulations(More)
New glycosyl derivative of cholesterol was synthesized as a material for preparing novel liposome to overcome the ineffective delivery of normal drug formulations to brain by targeting the (glucose transporters) GLUTs on the BBB. Coumarin-6 was used as fluorescent probe. The results have shown that the cytotoxicity for the brain capillary endothelial cells(More)
In this study, a brain-targeted chemotherapeutical delivery system, doxorubicin-loaded lactoferrin-modified procationic liposome (DOX-Lf-PCL) was developed, and its therapeutic effect for glioma was evaluated. The uptake profile of various DOX formulations in vitro by primary brain capillary endothelial cells (BCECs) and glioma cell C6 were studied by laser(More)
Delivery of drugs to the brain is a major challenge due to the presence of the blood-brain barrier (BBB). The cell penetrating peptide TAT, which appears to enter cells with alacrity, can pass through the BBB efficiently. With this in mind, a novel TAT-modified liposome (TAT-LIP) was developed for overcoming the ineffective delivery of normal drug(More)
BACKGROUND An intimidating challenge to transporting drugs into the brain parenchyma is the presence of the blood-brain barrier (BBB). Glucose is an essential nutritional substance for brain function sustenance, which cannot be synthesized by the brain. Its transport primarily depends on the glucose transporters on the brain capillary endothelial cells. In(More)