Learn More
The ventral lateral neurons (LNvs) of adult Drosophila brain express oscillating clock proteins and regulate circadian behavior. Whole cell current-clamp recordings of large LNvs in freshly dissected Drosophila whole brain preparations reveal two spontaneous activity patterns that correlate with two underlying patterns of oscillating membrane potential:(More)
Circadian pacemaker circuits consist of ensembles of neurons, each expressing molecular oscillations, but how circuit-wide coordination of multiple oscillators regulates rhythmic physiological and behavioral outputs remains an open question. To investigate the relationship between the pattern of oscillator phase throughout the circadian pacemaker circuit(More)
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that(More)
Adult spinal motoneurons can regenerate their axons into a peripheral nerve (PN) graft following root avulsion injury if the graft is implanted immediately after the lesion is induced. The present study was designed to determine how avulsed motoneurons respond to a PN graft if implantation takes place a few days to a few weeks later. Survival, regeneration,(More)
The distribution of nestin immunoreactivity was studied in the whole normal adult human forebrains using new anti-human nestin mouse monoclonal and rabbit polyclonal antiserum. The nestin immunoreactive cells could be divided into three types according to their morphological characteristics. The first type contained neuron-like nestin immunoreactive cells,(More)
Behavioral and genetic studies in Drosophila have contributed to our understanding of molecular mechanisms that underlie the complex processes of learning and memory. Use of this model organism for exploration of the cellular mechanisms of memory formation requires the ability to monitor synaptic activity in the underlying neural networks, a challenging(More)
The special physical and chemical properties of nanomaterials open up new capabilities and functions. However, concerns have been raised about the risks produced by nanoparticles, their potential to cause undesirable effects, such as contamination of the environment and other adverse effects. In this study, we used Drosophila as a model organism to explore(More)
Alzheimer's disease (AD) is characterized by amyloid β (Aβ) peptide aggregation and cholinergic neurodegeneration. Therefore, in this paper, we examined silibinin, a flavonoid extracted from Silybum marianum, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for AD treatment. To achieve this, we used(More)
Immunization with synthetic, preaggregated β-amyloid (Aβ) was the first treatment approach able to dramatically reduce brain Aβ pathology in Alzheimer's disease (AD) animal models. For the development of a safe vaccine, we investigated whether 4Aβ1-15 (four tandem repeats of GPGPG-linked Aβ1-15 sequences) had therapeutic effects in the APP/PS1 transgenic(More)
Voltage-gated calcium channels containing alpha1 subunits encoded by Ca(v)2 family genes are critical in regulating release of neurotransmitter at chemical synapses. In Drosophila, cac is the only Ca(v)2-type gene. Cacophony (CAC) channels are localized in motor neuron terminals where they have been shown to mediate evoked, but not AP-independent, release(More)