Learn More
The ventral lateral neurons (LNvs) of adult Drosophila brain express oscillating clock proteins and regulate circadian behavior. Whole cell current-clamp recordings of large LNvs in freshly dissected Drosophila whole brain preparations reveal two spontaneous activity patterns that correlate with two underlying patterns of oscillating membrane potential:(More)
Circadian pacemaker circuits consist of ensembles of neurons, each expressing molecular oscillations, but how circuit-wide coordination of multiple oscillators regulates rhythmic physiological and behavioral outputs remains an open question. To investigate the relationship between the pattern of oscillator phase throughout the circadian pacemaker circuit(More)
Behavioral and genetic studies in Drosophila have contributed to our understanding of molecular mechanisms that underlie the complex processes of learning and memory. Use of this model organism for exploration of the cellular mechanisms of memory formation requires the ability to monitor synaptic activity in the underlying neural networks, a challenging(More)
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that(More)
Voltage-gated calcium channels containing alpha1 subunits encoded by Ca(v)2 family genes are critical in regulating release of neurotransmitter at chemical synapses. In Drosophila, cac is the only Ca(v)2-type gene. Cacophony (CAC) channels are localized in motor neuron terminals where they have been shown to mediate evoked, but not AP-independent, release(More)
The distribution of nestin immunoreactivity was studied in the whole normal adult human forebrains using new anti-human nestin mouse monoclonal and rabbit polyclonal antiserum. The nestin immunoreactive cells could be divided into three types according to their morphological characteristics. The first type contained neuron-like nestin immunoreactive cells,(More)
BACKGROUND Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the(More)
The special physical and chemical properties of nanomaterials open up new capabilities and functions. However, concerns have been raised about the risks produced by nanoparticles, their potential to cause undesirable effects, such as contamination of the environment and other adverse effects. In this study, we used Drosophila as a model organism to explore(More)
Neuropeptide signaling plays roles in coordinating cellular activities and maintaining robust oscillations within the mammalian suprachiasmatic nucleus (SCN). Prokineticin2 (PK2) is a signaling molecule from the SCN and involves in the generation of circadian locomotor activity. Prokineticin receptor 2 (PKR2), a receptor for PK2, has been shown to be(More)
In this video, we demonstrate the procedure for isolating whole brains from adult Drosophila in preparation for recording from single neurons. We begin by describing the dissecting solution and capture of the adult females used in our studies. The procedure for removing the whole brain intact, including both optic lobes, is illustrated. Dissection of the(More)