Huaixin Zheng

Learn More
Francisella tularensis, the bacterial cause of tularemia, infects the liver and replicates in hepatocytes in vivo and in vitro. However, the factors that govern adaptation of F. tularensis to the intrahepatocytic niche have not been identified. Using cDNA microarrays, we determined the transcriptional profile of the live vaccine strain (LVS) of F.(More)
BACKGROUND Legionella pneumophila is a pathogenic bacterium that can cause Legionnaires' disease and other non-pneumonic infections in humans. This bacterium produces a pyomelanin pigment, a potential virulence factor with ferric reductase activity. In this work, we have investigated the role of phenylalanine hydroxylase from L. pneumophila (lpPAH), the(More)
Iron acquisition is critical to the growth and virulence of Legionella pneumophila. Previously, we found that L. pneumophila uses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted by L. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to(More)
Legionella pneumophila is a pathogenic bacterium commonly found in water. Eventually, it could be transmitted to humans via inhalation of contaminated aerosols. Iron is known as a key requirement for the growth of L. pneumophila in the environment and within its hosts. Many studies were performed to understand iron utilization by L. pneumophila but no(More)
The proliferation response of gammadelta T cells to the antigen from heat-treated Mycobacterium tuberculosis H37Ra (M.tb Ag) was used as a good model in gammadeltaT cell research. From preliminary research it is found that activated NK cells positively elevated gammadeltaT cells proliferation after simulating PBMCs with M.tb Ag. To investigate different(More)
Phenylalanine hydroxylase catalyzes the first step in the synthesis of pyomelanin, a pigment that aids in the acquisition of essential iron in certain bacteria. In this work, we present the development and application of a drug discovery protocol by targeting this enzyme in Legionella pneumophila, the major causative agent of Legionnaires' disease. We(More)
Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin.(More)
  • 1