Learn More
BACKGROUND The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of(More)
The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by(More)
Studies of in mesial temporal lobe epilepsy (mTLE) patients with hippocampal sclerosis (HS) have reported reductions in both functional and structural connectivity between hippocampal structures and adjacent brain regions. However, little is known about the connectivity among the default mode network (DMN) in mTLE. Here, we hypothesized that both functional(More)
Increasing evidence from behavioral and neuroimaging studies suggests that mesial temporal lobe epilepsy (mTLE) is possibly associated with the default-mode brain function. However, the alteration of coherent neural activities in such a default-mode network (DMN) in mTLE has yet to be investigated. The present study analyzed the resting-state functional MRI(More)
The superior capability of chess experts largely depends on quick automatic processing skills which are considered to be mediated by the caudate nucleus. We asked whether continued practice or rehearsal of the skill over a long period of time can lead to structural changes in this region. We found that, comparing to novice controls, grandmaster and master(More)
The human brain has been documented to be spatially organized in a finite set of specific coherent patterns, namely resting state networks (RSNs). The interactions among RSNs, being potentially dynamic and directional, may not be adequately captured by simple correlation or anticorrelation. In order to evaluate the possible effective connectivity within(More)
The effective connectivity networks among overlapped core regions recruited by motor execution (ME) and motor imagery (MI) were explored by means of conditional Granger causality and graph-theoretic method, based on functional magnetic resonance imaging (fMRI) data. Our results demonstrated more circuits of effective connectivity among the selected seed(More)
Various functional imaging tools have been used to detect epileptic activity in the neural network underlying mesial temporal lobe epilepsy (mTLE). In the present fMRI study, a data-driven approach was employed to map interictal epileptic activity in mTLE patients by measuring the amplitude of low-frequency fluctuation (ALFF) of the blood oxygen(More)
Multivariate Granger causality is a well-established approach for inferring information flow in complex systems, and it is being increasingly applied to map brain connectivity. Traditional Granger causality is based on vector autoregressive (AR) or mixed autoregressive moving average (ARMA) model, which are potentially affected by errors in parameter(More)
BACKGROUND This study was undertaken to explore whether there is a cerebellar compensatory response in patients with first-episode, treatment-naive major depressive disorder (MDD). The cerebellar compensatory response is defined as a cerebellar hyperactivity which would be inversely correlated with both the activation of the functionally connected cerebral(More)