Learn More
The genome of Trypanosoma brucei, the causative agent of African trypanosomiasis, was published five years ago, yet identification of all genes and their transcripts remains to be accomplished. Annotation is challenged by the organization of genes transcribed by RNA polymerase II (Pol II) into long unidirectional gene clusters with no knowledge of how(More)
Expression of dsRNA complementary to small nucleolar RNAs (snoRNAs) in Trypanosoma brucei results in snoRNA silencing, termed snoRNAi. Here, we demonstrate that snoRNAi requires the nuclear TbDCL2 protein, but not TbDCL1, which is involved in RNA interference (RNAi) in the cytoplasm. snoRNAi depends on Argonaute1 (Slicer), and on TbDCL2, suggesting that(More)
RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi(More)
At the core of the RNA interference (RNAi) pathway in Trypanosoma brucei is a single Argonaute protein, Tb AGO1, with an established role in controlling retroposon and repeat transcripts. Recent evidence from higher eukaryotes suggests that a variety of genomic sequences with the potential to produce double-stranded RNA are sources for small interfering(More)
The introduction ten years ago of RNA interference (RNAi) as a tool for molecular exploration in Trypanosoma brucei has led to a surge in our understanding of the pathogenesis and biology of this human parasite. In particular, a genome-wide RNAi screen has recently been combined with next-generation Illumina sequencing to expose catalogues of genes(More)
In recent years, one of the major breakthroughs in eukaryotic biology has been the discovery of the RNA interference (RNAi) pathway [1], a powerful gene silencing mechanism that operates both at the transcriptional and post-transcriptional levels. Originally discovered as a mechanism through which double-stranded RNA (dsRNA) triggers degradation of(More)
  • 1