Learn More
Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials. This study reports a new, green, and efficient reducing agent (caffeic acid/CA) for GO reduction. The CA-reduced GO (CA-rGO) shows a high C/O ratio (7.15) that is among(More)
Vertically-oriented graphenes (VGs) are promising active materials for electric double layer capacitors (EDLCs) due to their unique morphological and structural features. This study, for the first time, reports the molecular dynamics (MD) simulations on aqueous NaCl electrolytes confined within VG channels with different surface charge densities and channel(More)
Multilayer graphenes have been widely used as active materials for electric double-layer capacitors (EDLCs), where their numerous edges are demonstrated to play a crucial role in charge storage. In this work, the interfacial structure and capacitive behaviors of multilayer graphene edges with representative interlayer spacing are studied via molecular(More)
The chemical nature of electrolytes has been demonstrated to play a pivotal role in the charge storage of electric double-layer capacitors (EDLCs), whereas primary mechanisms are still partially resolved but controversial. In this work, a systematic exploration into EDL structures and kinetics of representative aqueous electrolytes is performed with(More)
The behavior of ion diffusion in nano-confined spaces and its temperature dependence provide important fundamental information about electric double-layer capacitors (EDLCs) employing nano-sized active materials. In this work, the ion diffusion coefficients of NaCl electrolyte confined within neutral and charged graphene nanochannels at different(More)
  • 1